GENERAL CONDITIONS FOR EXISTENCE
OF A SOLUTION
OF A SEMILINEAR PROBLEM

BY WITOLD OBLOZA

Abstract. This paper is devoted to the investigation of the abstract semilinear
initial value problem
\[
\begin{aligned}
\frac{du}{dt} &= Au + f(t, u) \\
u(0) &= x
\end{aligned}
\]
in a reflexive Banach space. We give conditions for existence of the solution.

1. Introduction. Let X be a real reflexive Banach space and let $A : X \supset D \rightarrow X$ be a linear closed densely defined operator. Let $f : [0, T] \times X \rightarrow X$ be a continuous function.
We consider the abstract initial value problem
\[
\begin{aligned}
\frac{du}{dt} &= Au + f(t, u) \quad t \in [0, T] \\
u(0) &= x
\end{aligned}
\]
(1)
x \in X.

Our purpose is to prove a theorem on existence and uniqueness of the solution
of (1). In [7] an existence and uniqueness theorem was proved under assumption
that f satisfies the Lipschitz condition. Instead of the Lipschitz condition
we only assume that f has bounded variation.

2. Preliminaries.

Definition 1. Let $\{x_n\}_{n=1}^{\infty}$ be a sequence of elements of X. By X^* we denote the Banach space of linear bounded forms on X. We say that $\{x_n\}_{n=1}^{\infty}$
. converges weakly if for every \(x^* \in X^* \) the sequence \(\{< x_n, x^* >\}_{n=1}^\infty = \{x^*(x_n)\}_{n=1}^\infty \) is convergent in \(\mathbb{R} \) when \(n \to \infty \). We say that \(\{x_n\}_{n=1}^\infty \) converges weakly to \(x \in X \) if the sequence \(\{< x_n - x, x^* >\}_{n=1}^\infty \) converges to 0, when \(n \to \infty \), for every \(x^* \in X^* \).

Lemma 1 ([5], Th. 10.5, P. 40). If \(X \) is a reflexive Banach space and \(A : D \to X \) is a closed linear operator densely defined, then the operator \(A^* \) adjoint to \(A \) is densely defined in \(X^* \).

Lemma 2. If \(X \) is a reflexive Banach space, then every weakly convergent sequence \(\{x_n\} \subset X \) is weakly convergent to an element of \(X \).

The proof is similar as in the case of Hilbert space ([4], Corollary 3, p. 98).

Lemma 3 ([2], Ex. 5.12, P. 165). Let \(A : D \to X \) be a closed linear operator in \(X \). If \(\{x_n\} \subset D \) is weakly convergent to \(x \) and \(\{Ax_n\} \) is weakly convergent to \(y \), then \(x \in D \) and \(Ax = y \).

Lemma 4 ([5], Th. 2.4, Pp. 4–5). Let \(\{S(t)\} \) be a \(C_0 \) semigroup on a Banach space \(X \) and let \(A : D \to X \) be its generator.

Then

\[
(a) \quad \int_r^t S(s)xds \in D \text{ and } A\left(\int_r^t S(s)xds\right) = S(t)x - S(r)x \quad \text{for } x \in X \text{ and } r, t \in [0, \infty)
\]

\[
(b) \quad \frac{d}{dt}(S(t)x) = AS(t)x = S(t)Ax \quad \text{for } x \in D, \ t \in [0, \infty).
\]

Lemma 5 ([2], Lem. III 1.31). Let \(\{x_n\} \) be a bounded sequence of elements of \(X \). Let \(F^* \subset X^* \) be a dense subset of \(X^* \) such that \(\{< x_n, x^* >\} \) converges for \(x^* \in F^* \). Then \(\{x_n\} \) converges weakly.

Lemma 6 ([6], Th. 2.1, P. 8). Let \(u : [0, T] \to [0, \infty) \) be a continuous function. If there exist \(\alpha, \beta \geq 0 \) such that

\[
u(t) \leq \alpha + \beta \int_0^t u(s)ds \quad \text{for } t \in [0, T],
\]

then

\[
u(t) \leq \alpha e^{\beta t} \quad \text{for } t \in [0, T].
\]
Lemma 7 ([2], Lem. III 3.7). Let \(K \subset X \) be a compact subset of \(X \). If \(\{T_n\}_{n=1}^{\infty} \) is a sequence of bounded operators on \(X \) strongly convergent to a bounded operator \(T \), then \(\{T_n\}_{n=1}^{\infty} \) converges uniformly on \(K \).

Definition 2. We say that \(f : [a, b] \rightarrow X \) has bounded variation if

\[
W_b^a(f) = \sup \left\{ \sum_{j=1}^{n} \| f(t_j) - f(t_{j-1}) \| : a \leq t_0 < \ldots < t_n \leq b \right\}
\]
is finite.

Lemma 8 ([3], Th. 4, P. 23). Let \(f : [a, b] \rightarrow X \) be a continuous function. If \(f \) has bounded variation, then the function \([a, b] \ni t \rightarrow W_t^a(f) \in [0, \infty) \) is uniformly continuous.

Lemma 9 ([3], Ex. 10, P. 217). Suppose that \(f : [a, b] \rightarrow X \) is a continuous function and \(\{\{s_j^l\}_{j=0}^{k_l}\}_{l=1}^{\infty} \) is a normal sequence of partitions of \([a, b]\) \((a = s_0^l < s_1^l < \ldots < s_{k_l}^l = b, \text{ for } l \in \{1, 2, 3, \ldots\}\), such that

\[
\lim_{l \rightarrow \infty} \left(\max\{s_j^l - s_{j-1}^l : j \in \{0, 1, 2, \ldots, k_l\}\} \right) = 0,
\]
then

\[
\lim_{l \rightarrow \infty} \sum_{j=1}^{k_l} \| f(s_j^l) - f(s_{j-1}^l) \| = W_b^a(f).
\]

Lemma 10 ([3], Ex. 68, P. 224). Let \(f : [a, b] \rightarrow X \) be a continuous function and let \(\{\{s_j^l\}_{j=0}^{k_l}\}_{l=1}^{\infty} \) be a normal sequence of partitions of the interval \([a, b]\). Then

\[
\lim_{l \rightarrow \infty} \sum_{j=1}^{k_l} \| \int_{s_{j-1}^l}^{s_j^l} f(t) dt \| = \int_a^b \| f(t) \| dt.
\]

3. The linear case. We shall consider the following initial value problem

\[
\begin{cases}
\frac{du}{dt} = Au + f(t) & t \in (0, T] \\
u(0) = x & x \in D,
\end{cases}
\]
where \(A : D \rightarrow X \) is the generator of a \(C_0 \) semigroup on a Banach space \(X \), and \(f : [0, T] \rightarrow X \) is a continuous function.

Definition 3. A continuous function \(u : [0, T] \rightarrow D \) is said to be a solution of the problem (2) if it is continuously differentiable in \((0, T]\) and satisfies the equation \(\frac{du}{dt}(t) = Au(t) + f(t) \), for \(t \in (0, T] \), and \(u(0) = x \).
Lemma 11 ([5], Th. 2.4, p. 107). Let \(A : D \rightarrow X \) be the generator of a \(C_0 \) semigroup \(\{ S(t) \} \) and let \(f : [0,T] \rightarrow X \) be a continuous function. We define
\[
v(t) = \int_0^t S(t-s)f(s)ds \quad \text{for} \quad t \in [0,T].
\]
If \(v(t) \in D \) for \(t \in (0,T] \), and the function \(t \rightarrow Av(t) \) is continuous on \((0,T] \), then the problem (2) has a solution.

Remark 1. From the proof of Lemma 11 it follows that the solution of (2) has the form:
\[
u(t) = S(t)x + v(t) \quad \text{for} \quad t \in [0,T].
\]

Lemma 12. Let \(X \) be a reflexive Banach space and let \(A : D \rightarrow X \) be the generator of a \(C_0 \) semigroup \(\{ S(t) \} \) on \(X \). Let \(f : [0,T] \rightarrow X \) be a continuous function with bounded variation on \([0,T] \). Then
\[
v(t,s) = \int_s^t S(t-r)f(r)dr \in D \quad \text{for} \quad 0 \leq s \leq t \leq T.
\]

We present here a proof similar to the proof of Lemma 1 in [1].
There exist constants \(M \geq 1, \omega > 0 \) such that \(\| S(t) \| \leq Me^{\omega t} \) for \(t \in [0,\infty) \)
(See [5] p. 4). Let \(t, s \in [0,T] \) and \(s \leq t \). For every \(n \in \{1,2,3,\ldots\} \) we write:
\[
u_n(t,s) = \int_s^t S(t-r)f_n(r)dr, \quad \text{where}
\]
\[
f_n(r) = \sum_{j=0}^{n-1} f(r_j)\chi_{B_j}(r)dr \quad \text{for} \quad r \in [s,t],
\]
\[
B_j = [r_j, r_{j+1}) \quad \text{for} \quad j \in \{0,1,2,\ldots,n-2\}, \quad B_{n-1} = [r_{n-1}, r_n],
\]
\[
r_j = s + \frac{t-s}{n} \cdot j \quad \text{for} \quad j \in \{0,1,2,\ldots,n\}, \quad \text{and} \quad \chi_{B_j}
\]
denotes the characteristic function of \(B_j \) for \(j \in \{0,1,2,\ldots,n-1\} \).
It is clear that \(\{f_n\} \) converges uniformly on \([s,t]\) to \(f \) and \(\{u_n(t,s)\} \) converges to \(v(t,s) \) when \(n \rightarrow \infty \).
\[A u_n(t, s) = \sum_{j=0}^{n-1} [S(t - r_j)f(r_j) - S(t - r_{j+1})f(r_j)] \]
\[= \sum_{j=0}^{n-1} S(t - r_j)f(r_j) - \sum_{j=1}^{n} S(t, r_j)f(r_{j-1}) \]
\[= S(t - s)f(s) + \sum_{j=1}^{n-1} S(t - r_j)[f(r_j) - f(r_{j-1})] - S(0)f(r_{n-1}) \]
\[= (S(t - s) - I)f(s) + \sum_{j=1}^{n-1} S(t - r_j)[f(r_j) - f(r_{j-1})] + [f(s) - f(r_{n-1})]. \]

Hence

(3) \[\| A u_n(t, s) \| \leq \| (S(t - s) - I)f(s) \| + (Me^{\omega T} + 1)W_s^t(f). \]

Thus \(\{ A u_n(t, s) \} \) is uniformly bounded relative to \(n, t \) and \(s \).

On the other hand we have

\[< A u_n(t, s), x^* > = < u_n(t, s), A^*x^* > \rightarrow < v(t, s), A^*x^* > \text{ for } x^* \in D(A^*). \]

By Lemma 1, \(D(A^*) \) is dense in \(X^* \), so by Lemma 5, \(\{ A u_n(t, s) \} \) is weakly convergent since \(\{ A u_n(t, s) \} \) is bounded (see (3)). From Lemma 2, \(\{ A u_n(t, s) \} \) converges weakly to an element of \(X \) denoted by \(y \) so by Lemma 3, \(v(t, s) \in D \) and \(A v(t, s) = y \) for \(s, t \in [0, T] \), \(s \leq t \).

REMARK 2. The inequality (3) leads to

(4) \[\| A v(t, s) \| \leq \| (S(t - s) - I)f(s) \| + (Me^{\omega T} + 1)W_s^t(f). \]

LEMMA 13. Let \(X, A, S(t), f \) be as in Lemma 12. Then the function \(w: [0, T] \rightarrow X \) defined by \(w(t) = A v(t) \), where \(v(t) = v(t, 0) \), is continuous.

We present here a proof similar to the proof of Lemma 2 in [1]:

By Lemma 12 the function \(w \) is well defined. Let \(t \in [0, T] \) be fixed and take \(h > 0 \) such that \(t + h \in [0, T] \). We have

\[w(t + h) - w(t) = A \int_0^{t+h} S(t + h - s)f(s)ds - A \int_0^t S(t - s)f(s)ds \]
\[= A \int_0^t [S(t + h - s) - S(t - s)]f(s)ds + \int_t^{t+h} S(t + h - s)f(s)ds \]
\[= (S(h) - I)w(t) + A \int_t^{t+h} S(t + h - s)f(s)ds. \]
From this and Remark 2 we have
\[
\| w(t + h) - w(t) \| \leq \| (S(h) - I)w(t) \| + \| (S(h) - I)f(t) \| \\
+ (Me^{\omega T} + 1)W_{t+h}(f).
\]
By the strong continuity of \(t \to S(t) \) the first and the second term of the right hand side of (5) tend to zero when \(h \searrow 0 \). By Lemma 8 the third term on the right hand side of (5) tends to 0 when \(h \searrow 0 \). Therefore
\[
\lim_{h \searrow 0} w(t + h) = w(t).
\]
The equality (6) proves that \(w \) is right continuous in \([0, T)\). To prove that \(w \) is left continuous in \((0, T]\) we define the family \(\{v_\varepsilon\}_{\varepsilon > 0} \) of functions \(v_\varepsilon : [0, T] \to X \) for each \(\varepsilon > 0 \) by
\[
v_\varepsilon(t) = \begin{cases}
 \int_0^{t-\varepsilon} S(t-s)f(s)ds & \text{for } \varepsilon \leq t \leq T \\
 0 & \text{for } 0 \leq t < \varepsilon.
\end{cases}
\]
Since
\[
\int_0^{t-\varepsilon} S(t-s)f(s)ds = S(\varepsilon) \int_0^{t-\varepsilon} S(t-\varepsilon-s)f(s)ds = S(\varepsilon)v(t-\varepsilon) \text{ for } \varepsilon > 0
\]
we can write
\[
v_\varepsilon(t) = \begin{cases}
 S(\varepsilon)v(t-\varepsilon) & \text{for } \varepsilon \leq t \leq T \\
 0 & \text{for } 0 \leq t < \varepsilon.
\end{cases}
\]
It follows from Lemma 12 that \(v(t-\varepsilon) \in D \) for \(t \in [\varepsilon, T] \). Therefore we can define a mapping \(w_\varepsilon : [0, T] \to X \) by the formula
\[
w_\varepsilon(t) = Av_\varepsilon(t), \quad t \in [0, T].
\]
The equality \(w_\varepsilon(t) = S(\varepsilon)w(t-\varepsilon) \) and (6) imply the right continuity of the function \(w_\varepsilon \) in \([0, T)\) for \(\varepsilon > 0 \). Now we shall prove that \(w_\varepsilon \) is left continuous in \((0, T]\) for \(\varepsilon > 0 \). Let \(h \in (0, \varepsilon) \) be such that \(t - h \in [\varepsilon, T] \) when \(t \in (\varepsilon, T] \) is fixed. We have:
\[
w_\varepsilon(t) - w_\varepsilon(t-h) = A \int_0^{t-\varepsilon} S(t-s)f(s)ds \\
-A \int_0^{t-h-\varepsilon} S(t-h-s)f(s)ds \\
= A \int_0^{t-\varepsilon} [S(t-s) - S(t-h-s)]f(s)ds + A \int_{t-\varepsilon-h}^{t-\varepsilon} S(t-h-s)f(s)ds \\
= [S(\varepsilon) - S(\varepsilon - h)]w(t-\varepsilon) + A \int_{t-\varepsilon-h}^{t-\varepsilon} S(t-h-s)f(s)ds.
\]
The first term on the right hand side of (7) tends to 0 when \(h \downarrow 0 \) and

\[
\| A \int_{t-h}^{t-\varepsilon} S(t-h-s)f(s)ds \| \leq \| S(\varepsilon-h) \| \| A \int_{t-h}^{t-\varepsilon} S(t-\varepsilon-s)f(s)ds \| \\
\leq Me^{\omega T} \| (S(h)-I)f(t-h-\varepsilon) \| + Me^{\omega T}(Me^{\omega T}+1)W_{t-h-\varepsilon}^{t-e}(f).
\]

Since the first term on the right hand side tends to 0 when \(h \downarrow 0 \) by Lemma 7 and the second term tends to 0 when \(h \downarrow 0 \) by Lemma 8, we have:

\[
\lim_{h \downarrow 0} w_{\varepsilon}(t-h) = w_{\varepsilon}(t) \quad \text{for} \quad t \in (\varepsilon,T].
\]

The equality (8) proves the left continuity of \(w_{\varepsilon} \) in \((0,T]\) because \(w_{\varepsilon}(t) = 0 \) for \(t \in (0, \varepsilon] \). Therefore \(w_{\varepsilon} \) is continuous in \((0,T]\) for each \(\varepsilon > 0 \).

Now let us observe that:

\[
\| w(t) - w_{\varepsilon}(t) \| = \| A \int_{t-\varepsilon}^{t} S(t-s)f(s)ds \| \\
\leq \| (S(\varepsilon)-I)f(t-\varepsilon) \| + (Me^{\omega T}+1)W_{t-\varepsilon}^{t}(f).
\]

By Lemma 7 and Lemma 8 this inequality implies that \(w_{\varepsilon} \) tends to \(w \) uniformly with respect to \(t \in [0,T] \) when \(\varepsilon \to 0 \). So \(w \) is a continuous function in the interval \((0,T]\).

THEOREM 1. Let \(X \) be a reflexive Banach space and let \(A : D \to X \) be the generator of a \(C_{0} \) semigroup \(\{S(t)\}_{t \geq 0} \). If \(f : [0,T] \to X \) is a continuous function with bounded variation, then the problem (2) has a unique solution given by the formula:

\[
u(t) = S(t)x + \int_{0}^{t} S(t-s)f(s)ds.
\]

PROOF. From Lemmas 11–13 and Remark 1 the formula (9) gives a solution of (2). If \(w \) is a solution of (2), then the function \(s \to S(t-s)w(s) \) is continuously differentiable in \((0,T]\) and

\[
\frac{d}{ds}(S(t-s)w(s)) = S(t-s)f(s).
\]

Integrating (10) from 0 to \(t \) we obtain

\[
w(t) = S(t)x + \int_{0}^{t} S(t-s)f(s)ds = u(t)
\]

and the uniqueness follows.
4. The nonlinear case.

DEFINITION 4. A continuous function \(u : [0, T] \rightarrow X \) is said to be a solution of the problem (1) if it is continuously differentiable in \((0, T)\),

\[
\frac{du}{dt}(t) = Au(t) + f(t, u(t)) \quad \text{for} \quad t \in (0, T], \quad \text{and} \quad u(0) = x.
\]

LEMMA 13 ([7] TH. 4.3). If \(u \) is a solution of the problem (1), then \(u \) is a solution of the following integral equation:

\[
(11) \quad u(t) = S(t)x + \int_0^t S(t-s)f(s, u(s))ds.
\]

PROOF. If \(u \) is a solution of the problem (1), then \(u(s) \in D \) for \(s \in (0, T] \) and \(\frac{d}{ds}(S(t-s)u(s)) = S(t-s)f(s, u(s)) \). By integration from 0 to \(t \) we obtain

\[
u(t) = S(t)x + \int_0^t S(t-s)f(s, u(s))ds.
\]

LEMMA 14 ([7] TH. 4.5). Let \(A : D \rightarrow X \) be the generator of a \(C_0 \) semigroup on \(X \). Let \(f : [0, T] \times X \rightarrow X \) be a continuous function satisfying a Lipschitz condition with respect to the second variable (i.e. there exists \(L > 0 \) such that for every \(y, z \in X \) and \(t \in [0, T] \)

\[
f(t, z) - f(t, y) \leq L \| z - y \|
\]

Then the equation (11) has a unique solution defined on \([0, T]\) which is continuous function.

LEMMA 15. If \(f : [a, b] \rightarrow X \) is a continuous function with bounded variation then for every \(\epsilon > 0 \) there exists \(\Delta > 0 \) such that

\[
\frac{1}{h} \int_a^{b-h} \| f(t+h) - f(t) \| dt \leq W_a^b(f) + \epsilon \quad \text{for} \quad h \in (0, \Delta)
\]

PROOF. Function \(f \) is uniformly continuous on \([a, b]\) hence there exists \(\Delta > 0 \) such that

\[
\| f(t+h) - f(t) \| \leq \epsilon \quad \text{for} \quad h \in [0, \Delta), \quad t \in [a, b-h].
\]

For fixed \(h \in (0, \Delta) \) there exists \(k = k(h) \) such that \(k \in N \) and \(a + kh \leq b - h < a + (k+1)h \).
We have

\begin{align*}
(12) \quad \frac{1}{h} \int_a^{b-h} \| f(t + h) - f(t) \| \, dt \\
= \frac{1}{h} \int_a^{a+kh} \| f(t + h) - f(t) \| \, dt + \frac{1}{h} \int_{a+kh}^{b-h} \| f(t + h) - f(t) \| \, dt \\
\leq \frac{1}{h} \int_a^{a+kh} \| f(t + h) - f(t) \| \, dt + \frac{1}{h} \cdot h \cdot \varepsilon \\
= \frac{1}{h} \int_a^{a+kh} \| f(t + h) - f(t) \| \, dt + \varepsilon
\end{align*}

It remains to show that

\[\int_a^{a+kh} \frac{1}{h} \| f(t + h) - f(t) \| \, dt \leq W_a^b(f). \]

Let us define \(\{ \{t_j^m\}_{j=0}^{km} \}_{m=1}^{\infty} \) normal sequence of partitions of \([a, b]\) by

\[t_j^m = a + j \frac{h}{m} \quad \text{for} \quad j \in \{0, 1, 2, \ldots, k \cdot m\}, \quad m \in \{1, 2, 3, \ldots\} \]

The integral sums for \(\int_a^{a+kh} \frac{1}{h} \| f(t + h) - f(t) \| \, dt \) has the form

\[\sum_{j=0}^{km-1} \frac{1}{h} \| (f(a + j \frac{h}{m} + h) - f(a + j \frac{h}{m}) \| \frac{h}{m} \]

\[= \sum_{r=0}^{m-1} \frac{1}{m} \sum_{p=0}^{k-1} \| (a + \frac{r h}{m} + (p + 1)h) - f(a + \frac{r h}{m}) \| \leq \frac{1}{m} \sum_{r=0}^{m-1} W_{a+\frac{r h}{m}}^{a+\frac{r h}{m}+k \cdot h}(f) \]

\[\leq \frac{1}{m} \cdot m W_a^b(f) = W_a^b(f). \]

Hence

\begin{align*}
(13) \quad \frac{1}{h} \int_a^{a+kh} \| f(t + h) - f(t) \| \, dt \\
= \lim_{m \to \infty} \sum_{j=1}^{k \cdot m-1} \frac{1}{h} \| f(a + j \frac{h}{m} + h) - f(a + j \frac{h}{m}) \| \cdot \frac{h}{m} \leq W_a^b(f).
\end{align*}

From (12) and (13) follows that

\begin{align*}
(14) \quad \frac{1}{h} \int_a^{b-h} \| f(t + h) - f(t) \| \, dt \leq W_a^b(f) + \varepsilon \quad \text{for} \quad h \in (0, \Delta), \quad t \in [a, b - h].
\end{align*}
Lemma 16 ([3] Ex. 70 P. 225). If \(f: [a, b] \rightarrow X \) is a continuous function then

\[
W^b_a(f) = \lim_{h \to 0} \int_a^{b-h} \frac{\| f(t + h) - f(t) \|}{h} \, dt.
\]

We present the proof of the equality (15) for reader's convenience.

Let \(\{ \{ t^{(i)l}_{j=0} \}_{j=1}^{k_l+1} \}_{l=1}^{\infty} \) be a normal sequence of partitions of \([a, b]\) such that \(\{ t^{(i+1)l}_{j=0} \}_{j=0} \supset \{ t^{(i)l}_{j=0} \}_{j=0} \). We define \(s^l_j(h) = a + (t^l_j - a) \frac{b-h-a}{b-a} \) for \(h \in [0, b-a) \), \(j \in \{0, 1, 2, \ldots, k_l\} \). In this way we obtain \(\{ \{ s^{(i)l}_{j=0} \}_{l=1}^{\infty} \} \) the normal sequence of partitions of \([a, b-h]\) for \(h \in [0, b-a) \).

By Lemma 10 we have:

\[
\lim_{h \to 0} \int_a^{b-h} \frac{\| f(t + h) - f(t) \|}{h} \, dt
\]

\[
= \lim_{l \to \infty} \lim_{h \to 0} \frac{1}{h} \sum_{j=1}^{k_l} \| \int_{s^l_j}^{s^l_j+h} (f(t + h) - f(t)) \, dt \|
\]

\[
= \lim_{l \to \infty} \left[\frac{1}{h} \sum_{j=1}^{k_l} \int_{s^l_j}^{s^l_j+h} f(t) \, dt - \int_{s^l_{j-1}}^{s^l_{j-1}+h} f(t) \, dt \right].
\]

If we prove that there exists

\[
\lim_{l \to \infty} \sum_{j=1}^{k_l} \frac{1}{h} \int_{s^l_j}^{s^l_j+h} f(t) \, dt - \int_{s^l_{j-1}}^{s^l_{j-1}+h} f(t) \, dt
\]

then by Lemma 9 we can write:

\[
\lim_{h \to 0} \frac{1}{h} \int_a^{b-h} \| f(t + h) - f(t) \| \, dt
\]

\[
= \lim_{l \to \infty} \sum_{j=1}^{k_l} \lim_{h \to 0} \frac{1}{h} \int_{s^l_j}^{s^l_j+h} f(t) \, dt - \int_{s^l_{j-1}}^{s^l_{j-1}+h} f(t) \, dt
\]

\[
= \lim_{l \to \infty} \sum_{j=1}^{k_l} \| f(t^l_j) - f(t^l_{j-1}) \| = W^b_a(f)
\]

because

\[
t^l_j = \lim_{h \to 0} s^l_j = \lim_{h \to 0} s^l_j(h), \text{ for } j \in \{0, 1, 2, \ldots, k_l\}, \; l \in \{1, 2, 3, \ldots\}.
\]
It remains to show the existence of the limit (17). Write
\[\varphi(l, h) = \sum_{j=1}^{k_l} \frac{1}{h} \| \int_{s_j^l + h}^{s_j^l + h} f(t) dt - \int_{s_j^l}^{s_j^l - h} f(t) dt \| \]
for \(h > 0, l \in \{1, 2, 3, \ldots \} \) and
\[\varphi(l, 0) = \lim_{h \to 0} \varphi(l, h) \quad \text{for} \quad l \in \{0, 1, 2, \ldots \}. \]

By Lemma 9 we have \(\varphi(l + 1, h) \geq \varphi(l, h) \) because \(\{t_j^{l+1}\} \supset \{t_j^l\} \) hence
\[\sup\{\varphi(l, h) : l \in \{1, 2, 3, \ldots \}\} = \lim_{l \to \infty} \varphi(l, h) = \frac{1}{h} \int_a^b f(t + h) - f(t) dt. \]
If \(W_a^b(f) < \infty \), by Lemma 15
\[\varphi(l, h) \leq \frac{1}{h} \int_a^b \| f(t + h) - f(t) \| dt \leq W_a^b(f) + \varepsilon \]
for all \(l \) and \(h \in (0, \Delta) \).

On the other hand, by Lemma 9 for every \(\varepsilon > 0 \) there exists \(l_0 \) such that
\[\varphi(l, 0) > W_a^b(f) - \frac{\varepsilon}{2} \quad \text{for} \quad l > l_0. \]

There exists \(\delta > 0 \) such that
\[\varphi(l_0, h) > \varphi(l_0, 0) - \frac{\varepsilon}{2} \quad \text{for} \quad h \in [0, \delta). \]

Since \(\varphi(l + 1, h) \geq \varphi(l, h) \) for \(h \in [0, b - a) \) and \(l \in \{1, 2, 3, \ldots \} \), from (19) and (20) we have
\[\varphi(l, h) \geq \varphi(l_0, h) > \varphi(l_0, 0) - \frac{\varepsilon}{2} > W_a^b(f) - \varepsilon \quad \text{for} \quad l > l_0, \ h \in [0, \delta). \]

From (18) and (21) we have
\[W_a^b(f) - \varepsilon < \varphi(l, h) < W_a^b(f) + \varepsilon \quad \text{for} \quad h < \min\{\Delta, \delta\}; \ l > l_0. \]

Hence the limit (17) exists and Lemma 16 is proved for \(f \) with bounded variation. If \(W_a^b(f) = \infty \), then for every \(C > 0 \) there exists \(l_0 \) such that
\[\varphi(l, 0) > 2C \quad \text{for} \quad l > l_0. \]

By definition of \(\varphi(l, 0) \) there exists \(h_0 \) such that
\[\varphi(l_0, 0) - C < \varphi(l_0, h) \quad \text{for} \quad h < h_0. \]

Since \(\varphi(l + 1, h) > \varphi(l, h) \) for \(h \in [0, b - a), \ l \in \{1, 2, 3, \ldots \} \), from (22), (23) we have
\[\varphi(l, h) > \varphi(l_0, 0) - C > C \quad \text{for} \quad h \in [0, h_0), \ l > l_0. \]

This proves Lemma 16.
Lemma 17. Let \(A: D \to X \) be the generator of a \(C_0 \) semigroup on \(X \) and let \(f: [0, T] \times X \to X \) be a continuous function, satisfying the Lipschitz condition with respect to the second variable. Suppose that there exists \(h_0 > 0 \) such that

\[
\int_0^{T-h} \frac{\| f(t+h, u(t)) - f(t, u(t)) \|}{h} \, dt
\]

is bounded by \(K \) uniformly with respect to \(h \in (0, h_0) \), where \(u \) is the solution of the equation (11).

Then the function \([0, T] \ni t \to f(t, u(t)) \in X \) has bounded variation.

Proof. We shall prove that \(u \) satisfies the Lipschitz condition, hence has bounded variation. Let \(h > 0 \) be such that \(t+h \in [0, T] \). We have

\[
\| u(t+h) - u(t) \| \leq \| S(t+h)x - S(t)x \| + \| \int_0^{t+h} S(t+h-s)f(s, u(s))ds - \int_0^t S(t-s)f(s, u(s))ds \| \\
\leq ah + \| \int_0^t S(t-s)[f(s+h, u(s+h)) - f(s+h, u(s)) + f(s+h, u(s)) - f(s, u(s))]ds \| \\
+hMe^{\omega T}m \leq (a + Me^{\omega T}m)h + LMMe^{\omega T} \int_0^t \| u(s+h) - u(s) \| \, ds \\
+hMe^{\omega T} \frac{1}{h} \int_0^t \| f(s+h, u(s)) - f(s, u(s)) \| \, ds \\
\leq (a + Me^{\omega T}m + Me^{\omega T} \cdot K) \cdot h + LMMe^{\omega T} \int_0^t \| u(s+h) - u(s) \| \, ds,
\]

where \(a \) is a Lipschitz constant for the function \(t \to S(t) \) strongly continuously differentiable by Lemma 4, \(L \) is a Lipschitz constant for \(f \) with respect to the second variable and \(m = \sup \{\| f(s, u(s)) \|, s \in [0, T] \} \).

By Lemma 6

\[
\| u(t+h) - u(t) \| \leq [(a + Me^{\omega T} \cdot m + Me^{\omega T} \cdot K) \exp(LMe^{\omega T}) \cdot h.
\]

Let us denote the Lipschitz constant for \(u \) by \(N \).
By Lemma 16 we have

\[
W_0^T(f(\cdot, u(\cdot))) = \lim_{h \to 0} \frac{1}{h} \int_0^{T-h} \| f(s + h, u(s + h)) - f(s, u(s)) \| \, ds
\leq \lim_{h \to 0} \left(\int_0^{T-h} \frac{1}{h} \| f(s + h, u(s + h)) - f(s + h, u(s)) \| \, ds + \int_0^{T-h} \frac{1}{h} \| f(s + h, u(s)) - f(s, u(s)) \| \, ds \right) \leq LNT + K.
\]

Theorem 2. Let \(X \) be a reflexive Banach space and let \(A : D \to X \) be the generator of a \(C_0 \) semigroup. Let \(f : [0, T] \times X \to X \) be a continuous function satisfying the Lipschitz condition with respect to the second variable. Suppose that there exists \(h_0 > 0 \) such that \(\frac{1}{h} \int_0^{T-h} \| f(s + h, u(s)) - f(s, u(s)) \| \, ds \) is uniformly bounded for \(h \in (0, h_0) \), where \(u \) is the solution of the equation (11). Then \(u \) is a unique solution of the problem (1).

Proof. The uniqueness of the solution of the problem (1) follows from Lemmas 13 and 14. By Lemma 17 the function \(t \to f(t, u(t)) \) satisfies the assumptions of Theorem 1 hence the problem:

\[
\begin{cases}
\frac{dw}{dt} = Aw + f(t, u(t)) & t \in (0, T] \\
w(0) = x & x \in D
\end{cases}
\tag{24}
\]

has a unique solution given by the formula

\[
w(t) = S(t)x + \int_0^t S(t - s)f(s, u(s))ds.
\]

But \(u \) satisfies (11) hence \(u = w \) is a solution of the problem (24). We have

\[
\frac{du}{dt}(t) = Au(t) + f(t, u(t)) \quad \text{for} \quad t \in (0, T] \quad \text{and} \quad u(0) = x
\]

so \(u \) is the solution of the problem (1).
References

Received June 12, 1996