ONE-PARAMETER POSITIVE CONTRACTION SEMIGROUPS ARE CONVERGENT

BY WOJCIECH BARTOSZEK

Abstract. We show that one-parameter positive contraction semigroups on Banach lattices are convergent. For classical semigroups, like stochastic ones on $L^1(m)$, or Markovian ones on $C(Z)$, the typical limit operator is a one-dimensional and strictly positive projection (i.e. it has the form $\Lambda \otimes f_*$ or, respectively, $\mu \otimes 1$, where $\Lambda(f) = \int f \, dm$, $f_* > 0$ a.e., and $\text{supp}(\mu) = Z$).

Let E be a Banach lattice with a fixed norm $\| \cdot \|$. A family $\{T(t)\}_{t \geq 0}$ of linear and bounded operators on E is said to be a semigroup if $T(0) = \text{Id}$ (identity operator), $T(t_1 + t_2) = T(t_1)T(t_2)$ for all $t_1, t_2 \geq 0$, and $\lim_{t \to 0^+} \| T(t)x - x \| = 0$ for each $x \in E$. If all operators $T(t)$ are positive then the semigroup $\mathcal{T} = \{T(t)\}_{t \geq 0}$ is called positive. In this paper we deal only with positive contraction semigroups (i.e. for all $t \geq 0$ we have $\| T(t) \| \leq 1$, where $\| \cdot \|$ stands for the operator norm in $\mathcal{L}(E)$, the Banach algebra of bounded linear operators on E).

For a fixed operator ρ – norm – closed set $\mathcal{C} \subseteq \mathcal{L}(E)$ of contractions we define \mathcal{M}_C to be the family of those semigroups \mathcal{T} for which $T(t) \in \mathcal{C}$ for all $t \geq 0$. Hence, we always assume that the identity operator Id is in \mathcal{C}. Let us equip \mathcal{M}_C with the metric $\rho(\mathcal{T}_1, \mathcal{T}_2) = \sup_{t \in [0,1]} \| T_1(t) - T_2(t) \|$. Then (\mathcal{M}_C, ρ) becomes a complete metric space. Moreover, it is easy to calculate that for any t_0 we have $\sup_{t \in [0,t_0]} \| T_1(t) - T_2(t) \| \leq (1+t_0)\rho(\mathcal{T}_1, \mathcal{T}_2)$. This implies that the metric considered by Lasota and Myjak in [LaMy] (also denoted by ρ) is equivalent to the defined here metric ρ.
In [LaMy] the authors study semigroups of stochastic operators on $L^1(m)$, where m is a fixed σ–finite measure. The set
\[
\left\{ f \in L^1(m) : f \geq 0 \text{ m.e. and } \int f \, dm = 1 \right\}
\]
of all densities in $L^1(m)$ is denoted by \mathcal{D}. Recall that a linear operator $P : L^1(m) \to L^1(m)$ is said to be stochastic if $P(\mathcal{D}) \subseteq \mathcal{D}$. By the main result of [LaMy] the semigroups \mathcal{T} which satisfy $\lim_{t \to 0^+} \| T(t)f - (\int f \, dm) f_* \| = 0$, where f_* is strictly positive, form a ρ–dense $G_δ$ subset of \mathfrak{M}_C (here C is the set of all stochastic operators on $L^1(m)$). This note may be recognized as a generalization of [LaMy] as we obtain corresponding results for abstract Banach lattices.

A densely defined operator $A_\mathcal{T} x = \lim_{t \to 0^+} \frac{T(t)x - x}{t}$ is called the generator of the semigroup \mathcal{T}. Similarly as in [LaMy] we use the Phillips technique of perturbations. Recall (see [G] for all details) that for any $B \in \mathcal{L}(E)$ the operator $A_\mathcal{T} + B$ is a generator of a continuous semigroup. This semigroup is defined by

(i) \[
T_0^B(t) + \sum_{n=1}^{\infty} T_n^B(t) \text{ where } T_0^B(t) = T(t)
\]
and inductively

(ii) \[
T_{n+1}^B(t) = \int_0^t T(t-s)BT_n^B(s)ds.
\]

The above series is convergent in the operator norm and the convergence is uniform on bounded intervals.

If both \mathcal{T} and B are positive then for any positive $\varepsilon > 0$ the semigroup $\mathcal{T}^{\varepsilon,B} = \{ T^{\varepsilon,B}(t) \}_{t \geq 0}$ generated by $A_\mathcal{T} + \varepsilon(B - \text{Id})$ is also positive. It may be easily proved that if B and \mathcal{T} are contractions, then
\[
T^{\varepsilon,B}(t) = e^{-\varepsilon t}(T(t) + \sum_{n=1}^{\infty} \varepsilon^n T_n^B(t))
\]
are contractions too (for this we notice the estimation $\| T_n^B(t) \| \leq \frac{t^n}{n!}$). In order to ensure that we stay in \mathfrak{M}_C we have to impose the following condition:

there exists a compact operator $B \in C$ such that

for any $\varepsilon > 0$, and any semigroup $\mathcal{T} \in \mathfrak{M}_C$ with

the generator $A_\mathcal{T}$, the semigroup generated by $A_\mathcal{T} + \varepsilon(B - \text{Id})$ belongs to \mathfrak{M}_C.

(*)
All the sets \mathcal{M}_C considered in this paper are assumed to enjoy (*)

Remark 1. The condition (*) is satisfied for many natural classes of operators. For instance it is so if C is the set of all stochastic operators on $L^1(m)$.

(*) is valid also for $E = C(Z)$ where Z is a compact topological Hausdorff space, but now C is the family of all Markov operators (we say that B on $C(Z)$ is markovian if $B \geq 0$ and $B1 = 1$). Using Hahn–Banach theorem we may show that generally, if C consists of those linear contractions $B : E \to E$ for which $Bx_0 = x_0$ for a fixed x_0 ($B^*x_0^* = x_0^*$ for some $x_0^* \in E^*$) then (*) holds.

Recall that a semigroup $\{T(t)\}_{t \geq 0}$ (an operator B) is quasi–compact if

$$
\lim_{t \to \infty} \text{dist}\{T(t), \mathcal{K}(E)\} = 0 \quad (\lim_{n \to \infty} \text{dist}\{B^n, \mathcal{K}(E)\} = 0),
$$

where $\mathcal{K}(E)$ stands for the ideal of compact operators on E and

$$
\text{dist}\{T(t), \mathcal{K}(E)\} = \inf_{K \in \mathcal{K}(E)} \left\| T(t) - K \right\|.
$$

Asymptotic properties of quasi–compact semigroups are well known. The reader is referred to [N] for a comprehensive review of this subject. For the completeness of the paper we present the following result here, which will be used in the sequel.

Proposition A. Let $T = \{T(t)\}_{t \geq 0}$ be a positive semigroup of contractions on a Banach lattice E. Then the following conditions are equivalent:

(a) $\lim_{t \to \infty} \sup_{\|x\| \leq 1} \text{dist}\{T(t)x, \mathcal{F}\} = 0$, where \mathcal{F} is a compact subset (contraction) of E,

(b) there exist constant $0 \geq C, 0 \leq a < 1$ and a finite-dimensional positive projection Q such that $\left\| T(t) - Q \right\| \leq Ca^t$ for all $t \geq 0$,

(c) for some (for all) $t_0 > 0$ there exists a finite-dimensional projection Q such that $\left\| \frac{1}{N} \sum_{n=0}^{N-1} T(nt_0) - Q \right\| \to 0$,

(d) there exists a compact operator K such that $\left\| T(t_0) - K \right\| < 1$ for some positive t_0,

(e) for some (for all) $t_0 \geq 0$ there exists a compact set $\mathcal{F}_0 \subseteq E$ such that $\lim_{n \to \infty} \sup_{\|x\| \leq 1} \text{dist}\{T(nt_0)x, \mathcal{F}_0\} = 0$.

Proof. (a) \implies (b) Let $T = T(1)$. By Theorem 2 from [B2] there exists natural d and a finite-dimensional positive projection Q such that
\[\lim_{n \to \infty} \left\| T^{nd} - Q \right\| = 0. \] Let \(\Omega \) denote the subspace of all limit points of the semigroup \(T(t) \), i.e. \(x \in \Omega \) if and only if \(\lim_{j \to \infty} \| T(t_j)x_0 - x \| = 0 \) for some \(t_j \not\to \infty \) and \(x_0 \in E \). It is not difficult to notice that \(\Omega \) coincides with

\[\{ T(t)Qx : x \in E, 0 \leq t \leq d \} = \{ QT(t)x : x \in E, 0 \leq t \leq d \} = Q(E). \]

Therefore \(\Omega \) is finite-dimensional. It is proved in [B2] that \(\Omega \) is a Banach lattice with the order inherited from \(E \) and for any \(t \geq 0 \) the operator \(T(t) \) is a lattice isomorphism on \(\Omega \). As a result, for a fixed base \(e_1, \ldots, e_r \) of positive normalized and pairwise orthogonal vectors in \(\Omega \), and for all \(t \) we have \(T(t)e_i = e_{\alpha^t(i)} \), where \(\alpha^t \) is a permutation of \(\{1, 2, \ldots, r\} \). Since the semigroup is continuous we have \(T(t)e_i = e_i \) if \(t \) is sufficiently close to \(0 \). We conclude that for each \(t > 0 \) the operator \(T(t) \) restricted to \(\Omega \) is the identity, so there is \(Q = T(t)Q \).

Now let \(n \) be such that \(t = nd + t' \) where \(0 \leq t' < d \). We have

\[\left\| T(t) - Q \right\| = \left\| T(t')T^{nd} - T(t')Q \right\| \leq \left\| T^{nd} - Q \right\|. \]

Applying Theorem 2.1 ([N] page 343) we may find constants \(C > 0 \) and \(0 < a < 1 \) such that \(\left\| T(t) - Q \right\| \leq Ca^t \).

(b) \(\implies \) (c) is obvious and (c) \(\implies \) (d) is proved in [Li].

(d) \(\implies \) (e) is a part of Theorem 2 in [B2].

(e) \(\implies \) (a) instantly follows from the estimation

\[\sup_{\|x\| \leq 1} \text{dist}\{T(t)x, \mathcal{F}\} \leq \sup_{\|x\| \leq 1} \text{dist}\{T(nt_0), \mathcal{F}_0\}, \]

where \(\mathcal{F} = \{ T(s)\mathcal{F}_0 : 0 \leq s \leq t_0 \} \) and \(nt_0 \leq t \leq (n+1)t_0 \).

\[\square \]

REMARK 2. It may be easily checked that each of the above conditions implies \(\frac{1}{L} \int_0^L T(t)dt - Q \) \(\to 0 \) as \(L \to \infty \), where \(Q \) is a finite-dimensional positive projection. The reverse does not hold in general. In fact, let us consider \(E \) to be the Banach lattice \(C(T) \) of all continuous functions on the one-dimensional torus \(T \) and \(T(t)f(x) = f(e^{2\pi it}x) \). For all \(L \geq 1 \) we have

\[\left\| \frac{1}{L} \int_0^L T(t)dt - \lambda \otimes 1 \right\| \leq \frac{2(L - [L])}{L} \leq \frac{2}{L}. \]
where $|L|$ denotes the largest natural number not exceeding L and λ stands for the normalized Haar measure on T. This shows that the semigroup $T(t)$ is uniformly ergodic. But $T(1)$ is the identity operator, so the semigroup $\{T(t)\}_{t \geq 0}$ is not quasi-compact.

Immediately from Proposition A, we get

Corollary 1. If $\lim_{n \to \infty} \| T(nt_0) - Q \| = 0$ for some $t_0 > 0$ and Q is one-dimensional, then $\lim_{t \to \infty} \| T(t) - Q \| = 0$.

Remark. For stochastic semigroups the above result has its version for the strong operator topology. Namely, it is proved in [LaMa] (see Theorem 7.4) that if $\{T(t)\}_{t \geq 0}$ is a stochastic semigroup on $L^1(m)$, such that for some $t_0 > 0$ the iterates $T^n(t_0)$ are convergent in the strong operator topology to $\Lambda \otimes f_*$ (here and in the sequel, Λ stands for the integral functional $\Lambda(f) = \int f \, dm$), then $\lim_{t \to \infty} \| T(t)f - \Lambda(f)f_* \| = 0$ for all $f \in L^1(m)$. It is an easy exercise that the strong operator version of Corollary 1 is valid for an arbitrary Banach lattice.

Now recall another auxiliary result, which easily follows from Proposition 2.9 in [N] (page 215). By $\mathcal{M}_C(\mathcal{M}_{C,1})$ we denote the set of all semigroups from $\mathcal{T} \in \mathcal{M}_C$ so that the limit $\lim_{t \to \infty} T(t)$ is finite-dimensional (one-dimensional).

Clearly $\overline{\mathcal{M}_C}$ coincides with the set of all quasi-compact semigroups contained in \mathcal{M}_C.

Proposition B. Let $C \subseteq \mathcal{L}(E)$ be a fixed, closed in the norm topology set of positive and linear contractions on a Banach lattice E. If C satisfies (*) then the set $\overline{\mathcal{M}_C}$ is ρ-dense and open in \mathcal{M}_C.

Proof. Let $B \in C$ be a compact operator such that for all $\varepsilon > 0$ and $T \in \mathcal{M}_C$, the semigroup $\{T^{\varepsilon,B}(t)\}_{t \geq 0}$ belongs to \mathcal{M}_C. By [N] this semigroup is quasi-compact. Hence the first part of the proposition is clear. To get the openness of $\overline{\mathcal{M}_C}$, it is sufficient to apply Proposition A (d). In fact, we have the characterization $\overline{\mathcal{M}_C} = \{ T \in \mathcal{M}_C : \text{dist}(T, \mathcal{K}(E)) < 1 \}$.

The next two results are strongly related to [LaMy]. They are included here for the sake of completeness of the paper. We would like to emphasize that the proofs of Corollaries 2 and 3 presented here seem to be slightly shorter and have stronger versions than the corresponding ones in [LaMy].

Let us consider the Banach lattice $L^1(m)$, where m is a σ-finite measure and C is the set of all stochastic operators on $L^1(m)$. Using (i) and (ii) for
fixed \(f_0 \in \mathcal{D}, \varepsilon > 0 \), and \(\mathcal{T} \in \mathcal{M}_c \) we get
\[
\sup_{f_1, f_2 \in \mathcal{D}} \| T^{\varepsilon, \Lambda \otimes f_0}(t) f_1 - T^{\varepsilon, \Lambda \otimes f_0}(t) f_2 \|
= e^{-\varepsilon t} \sup_{f_1, f_2 \in \mathcal{D}} \| T(t)f_1 - T(t)f_2 \| \leq 2e^{-\varepsilon t} < 2,
\]
where \(t > 0 \) is arbitrary. Combining Proposition A with Theorem 1 from [B3], we obtain \(Q = \lim_{n \to \infty} T^{\varepsilon, \Lambda \otimes f_0}(nt) = \Lambda \otimes f_* \) for some \(f_* \in \mathcal{D} \). Following our Corollary 1 we have \(\lim_{t \to \infty} \left\| T^{\varepsilon, \Lambda \otimes f_0} - \Lambda \otimes f_* \right\| = 0 \). As a result we have obtained:

Corollary 2. Let \(\mathcal{C} \) be the set of all stochastic operators on \(L^1(m) \). Then the set \(\mathcal{M}_{\mathcal{C},1} \) is \(\rho \)-dense and open in \(\mathcal{M}_c \).

Since \(m \) is \(\sigma \)-finite we may construct \(m \) almost everywhere strictly positive \(f_0 \in \mathcal{D} \). For any \(f \in \mathcal{D} \), we have
\[
T^{\varepsilon, \Lambda \otimes f_0}(1)f \geq e^{-\varepsilon} \int_0^1 T(t - s)f_0 ds > 0 \text{ a.e.}
\]
Hence invariant density \(f_* = T^{\varepsilon, \Lambda \otimes f_0}(1)f_* \) is strictly positive. Finally we notice that the family \(\mathcal{M}_{\mathcal{C},1,+,\overline{t}} \) of those semigroups \(\mathcal{T} \in \mathcal{M}_c \) which satisfy
\[
\lim_{t \to \infty} \left\| T(t) - \Lambda \otimes f_* \right\| = 0 \text{ with strictly positive } f_* \text{ may be represented as}
\]
\[
\bigcap_{l=1}^{\infty} \bigcap_{j=1}^{\infty} \left(\bigcup_{t > 0} M_{l,j,t} \cap \mathcal{M}_{\mathcal{C},1} \right),
\]
where
\[
M_{l,j,t} = \left\{ \mathcal{T} \in \mathcal{M}_c : \frac{m\{x \in E_j : T(t)f(x) > 0\}}{m(E_j)} > 1 - \frac{1}{l} \text{ for all } f \in \mathcal{D} \right\}
\]
are \(\rho \)-open.

Now we are in a position to formulate the result which corresponds to Theorem 6 obtained by Lasota and Myjak in [LaMy]. We point out that our version is stronger as their convergence is only in the strong operator topology.

Corollary 3. Let \(\mathcal{C} \) be the family of stochastic operators on \(L^1(m) \). Then \(\mathcal{M}_{\mathcal{C},1,+} \) is a \(\rho \)-dense \(G_5 \) subset of \(\mathcal{M}_c \).

Remark 4. The reader is referred to [I] for Baire category theorems of a single stochastic operator.
Another important class of positive operators if that of Markov operators. Let Z be a compact topological Hausdorff space and $C(Z)$ denote the Banach lattice of all continuous functions on Z, with the ordinary supremum norm and the pointwise order. We have already noticed that if C stands for the family of Markov operators on $C(Z)$ then $(*)$ is fulfilled. One-dimensional Markov projections are of the form $\mu \otimes 1$, where μ belongs to $P(Z)$, the set of all probability (Radon) measures on Z. If $\mu \otimes 1$ is a limit of a quasi-compact semigroup $\{T(t)\}_{t \geq 0}$ then $T(t)^* \mu = \mu$ for all $t \geq 0$. Let us recall (see [S]) that a closed set $F \subseteq Z$ is said to be \mathcal{T}-invariant if for all $t \geq 0$ and $x \in F$ we have $T(t)^* \delta_x (F) = 1$ (equivalently $T(t)f(x) = 0$ on F if $f \in C(Z)$ satisfies $f \equiv 0$ on F). A \mathcal{T}-invariant set F is called \mathcal{T}-minimal if there is no smaller \mathcal{T}-invariant set included in F. It is well known (see [S]) that every \mathcal{T}-invariant set F always contains at least one \mathcal{T}-minimal subset. By [B3] a quasi-compact semigroup \mathcal{T} has only finitely many minimal sets, which coincide with the supports of ergodic \mathcal{T}-invariant probability measures ($\mu \in P(Z)$ is said to be ergodic if it is an extreme point of the *weak-*compact and nonempty set

$$P_{\mathcal{T}}(Z) = \{\mu \in P(Z) : T(t)^* \mu = \mu \text{ for all } t \geq 0\}.$$

Distinct \mathcal{T}-invariant and ergodic probabilities of a quasi-compact semigroup \mathcal{T} have always disjoint supports.

On the other hand, if a quasi-compact semigroup \mathcal{T} of Markov operators on $C(Z)$ has the unique minimal invariant set M, then there exists a measure $\mu \in P(Z)$ such that $\lim_{t \to \infty} \|T(t) - \mu \otimes 1\| = 0$. In this case $\text{supp}(\mu) = M$.

It easily follows from invariance that if M_1 and M_2 are two distinct \mathcal{T}-minimal sets then for every pair of probability measures $\nu_i \in P(M_i)$ $i = 1, 2$ we have $\|T(t)^* \nu_1 - T(t)^* \nu_2\| = 2$, for all $t \geq 0$. The last property implies that a quasi-compact semigroup \mathcal{T} is convergent to a one-dimensional projection if and only if there exists $t_0 > 0$ such that

$$\sup_{\nu_1, \nu_2 \in P(Z)} \|T(t_0)^* \nu_1 - T(t_0)^* \nu_2\| < 2,$$

what holds exactly when $P_{\mathcal{T}}(Z)$ is a singleton.

The reader is referred to [B1] and [B2] for detailed informations concerning the structure of minimal invariant sets of quasi-compact Markov operators as well as asymptotic properties of their iterates.

Corollary 4. Let C be the set of all Markov operators on $C(Z)$. Then $\overline{M_{C, 1}}$ is ρ-dense and open in M_C.

Proof. The openness follows from the representation

$$\overline{M_{C, 1}} = \bigcup_{t > 0} (M_C \cap \{T : \sup_{\nu_1, \nu_2 \in P(Z)} \|T(t)^* \nu_1 - T(t)^* \nu_2\| < 2\}).$$
which may be easily obtained using Theorem 1 in [B2].

For the denseness we consider the Markov projection \(B_\mu = \mu \otimes 1 \), where \(\mu \) is a probability measure on \(Z \) such that \(\text{supp}(\mu) = M \) is the only \(B_\mu \)-minimal set (for instance we may take \(\mu = \delta_z \) with an arbitrary \(z \in Z \)).

Now, let \(M_1 \) and \(M_2 \) be two \(T^e, B_\mu \)-invariant sets. Note that always, \(T^e, B \)-invariant sets are \(B \)-invariant. Suppose not, and let \(F \) be \(T^e, B \)-invariant but not \(B \)-invariant. We find a nonnegative function \(f \in C(Z) \) satisfying \(f \equiv 0 \) on \(F \), but such that \(Bf(x) = \alpha > 0 \) for some \(x \in F \). By the strong continuity of \(T \) for small \(t_0 > 0 \) we have

\[
T(\tau)BT(s)f(x) > \frac{\alpha}{2} \text{ if } 0 \leq s, \tau < t_0.
\]

This yields

\[
0 = \langle f, [T^e, B(t_0)]^* \delta_x \rangle = T^e, B(t_0)f(x) \\
\geq e^{-\varepsilon t_0} \int_0^{t_0} T(t_0 - s)BT(s)f(x) \, ds > \varepsilon t_0 \frac{\alpha}{2} e^{-\varepsilon t_0}
\]

and we get a contradiction.

Therefore, every two \(T^e, B_\mu \)-invariant sets \(M_1 \) and \(M_2 \) contain the set \(M \), therefore there is exactly one \(T^e, B_\mu \)-minimal set. This implies \(T^e, B_\mu \in M_{C,1} \) and the proof is completed.

\[\square \]

If \(Z \) is compact and metrizable then similarly as for stochastic semigroups we get:

Corollary 5. Let \(C \) be as in Corollary 4. Then the set \(\widehat{M_{C,1,+,1}} \) of those Markov semigroups \(T \) on \(C(Z) \) for which \(\lim_{t \to \infty} T(t) = \mu \otimes 1 \), with \(\text{supp}(\mu) = Z \), is a \(\rho \)-dense \(G_\delta \) subset of \(\widehat{M_{C}} \).

Proof. Let \(U_j \) be a countable open base for the topology of \(Z \). We identify \(\widehat{M_{C,1,+,1}} \) as \(\bigcap_{j=1}^{\infty} \bigcup_{\varepsilon > 0} \bigcup_{t > 0} M_{j,\varepsilon,t} \) where

\[
M_{j,\varepsilon,t} = \{ T \in \widehat{M_{C,1}} : \inf_{\nu \in P(Z)} T(t)^* \nu(U_j) > \varepsilon \}.
\]

Clearly \(M_{j,\varepsilon,t} \) are \(\rho \)-open. To show the denseness we may construct semigroups \(T^e, B \), where \(\varepsilon \to 0 \), \(B = \mu \otimes 1 \) and \(\text{supp}(\mu) = Z \).

\[\square \]
References

Received June 24, 1994