ON SMOOTH DEPENDENCE OF SOLUTIONS
OF PARABOLIC EQUATIONS ON COEFFICIENTS

by Zdzisław Brzeźniak

In this paper we deal with the dependence of the solution of the parabolic equation (1) – (3) on the coefficients \(a_i \) (\(i = 1, \ldots, n \)), \(b \) on functions \(u_0, f \), in the case when \(\Omega \) is an open subset of \(\mathbb{R}^n \).

\[
\frac{\partial u}{\partial t}(t,x) - \Delta u(t,x) + \sum_{i=1}^{n} a_i(t,x) \frac{\partial u}{\partial x_i}(t,x) + b(t,x) \cdot u(t,x) = f(t,x), \quad 0 < t < T, x \in \Omega
\]

(2) \[u(0,x) = u_0(x), \quad x \in \Omega \]

(3) \[u(t,x) = 0, \quad 0 < t < T, \quad x \in \partial \Omega \]

We assume that

\[
a_i, b \in L^\infty([0,T] \times \Omega) = L^\infty(\Omega_T), \quad T < \infty, \quad i = 1, \ldots, n.
\]

We shall prove that the function \((a_i, b) \mapsto u\) is analytic (in appropriate spaces). To show this we will use the notations and theorems from [3].

Let us denote

\[
H = L^2(\Omega), \quad V = H_0^1(\Omega)
\]

We identify \(H \) with its antidual \(H' \) (that is \(H = H' \)) and following [3] we have:

\[
V' = H^{-1}(\Omega), \quad V \subset H \subset V',
\]

where the imbeddings are continous and dense.
By \((,\,,\,>)\), \(<\,,\,>\) and \(||\,,\,||\,\>\) we denote the scalar products and norms in \(V\) and \(H\), respectively.

For any \(t \in [0, T]\) we define the following form:

\[
a(t, \cdot, \cdot) : V \times V \ni (u, v) \mapsto \sum_{i=1}^{n} \int_{\Omega} a_i(t, x) D_i u(x) \cdot D_i v(x) dx \]

\[
+ \int_{\Omega} b(t, x) u(x) v(x) dx + \sum_{i=1}^{n} \int_{\Omega} D_i u(x) D_i v(x) dx
\]

(7)

Then we get that for any \(u, v \in V\) the function \(t \mapsto a(t, u, v)\) is measurable and from the Schwartz inequality it follows that

\[
\exists c > 0 \ | a(t, u, v) | \leq c |u| \cdot |v|, \quad \forall u, v \in V, t \in [0, T]
\]

(8)

We denote \(c_1 := \max \{ |a_i|_{L^{\infty}(\Omega_T)} \}, c_0 := |b|_{L^{\infty}(\Omega_T)}\). Since for any \(\varepsilon > 0\) we have

\[
\left| \int_{\Omega} a_i(t, x) D_i u(x) \overline{v(x)} dx \right| \leq \frac{1}{2} c_1 \varepsilon |D_i u|^2 + \frac{1}{2} |u|^2,
\]

\[
\left| \int_{\Omega} b(t, x) u(x) \overline{v(x)} dx \right| \leq c_0 |u|^2
\]

we have

\[
\text{Re } a(t, u, u) \geq \sum_{i=1}^{n} \left[|D_i u|^2 - \frac{\varepsilon}{2} c_1 |D_i u|^2 \right] - \frac{n}{2 \varepsilon} c_1 |u|^2 - c_0 |u|^2
\]

\[
= \left(\sum_{i=1}^{n} |D_i u|^2 \right) \cdot \frac{2 - \varepsilon c_1}{2} - \left(c_0 + \frac{nc_1}{2 \varepsilon} \right) |u|^2
\]

Thus, if \(\varepsilon \leq c_1^{-1}\) and \(\lambda \geq \lambda_0 := c_0 + \frac{nc_1}{2 \varepsilon} + 1\) then

\[
\text{Re } a(t, u, u) + \lambda |u|^2 \geq \sum_{i=1}^{n} |D_i|^2 + |u|^2 = ||u||^2
\]

(9)

That means that the form \(a(t, \cdot, \cdot)\) is coercive with respect to \(V\). Next we introduce the following spaces:

\[
V := L^2(O, T, V), \quad \mathcal{H} := L^2(O, T, H)
\]

(10)
By \mathcal{V}' we denote the antidual space to \mathcal{V} and we have

\begin{equation}
\mathcal{V}' = L^2(\mathcal{O}, T, \mathcal{V}').
\end{equation}

Since (8) the form $a(t, \cdot, \cdot)$ is continous on $V \times V$ (for t fixed), so there exists the unique $A(t) \in \mathcal{L}(V, V')$ such that

\begin{equation}
(A(t)u)(v) = a(t, u, v), \quad \forall u, v \in V
\end{equation}

We shall treat the following equation

\begin{equation}
\frac{du}{dt} + A(t)u(t) = f(t), \quad 0 < t < T
\end{equation}

which is a functional version of the equation (1). If $f \in L^2(\mathcal{O}, T, \mathcal{V}') = \mathcal{V}'$ then u is a solution of (13) iff $u \in \mathcal{V} = L^2(\mathcal{O}, T, V)$, $u' = \frac{du}{dt}$ and the equation (13) is satisfied in the sense of distributions on $(0, T)$ with values in \mathcal{V}'. We shall recall some facts concerning the problem of existence and uniqueness of solutions of the equation (13), together with the initial condition $u(0) \in u_0$. Let us denote

\begin{equation}
Y := \{u \in \mathcal{V} : u' \in \mathcal{V}'\}, \quad |u|_Y^2 := |u|_V^2 + |u'|_{\mathcal{V}'}^2.
\end{equation}

Y is a Hilbert space and because of the Trace Theorem (see [3] Th. 3.1) if $u \in Y$ then $u \in \mathcal{C}([0, T], H)$ (after possible modification on a set of measure 0) and the imbedding $Y \hookrightarrow \mathcal{C}([0, T], H)$ is continuous. If $X := \{u \in Y : u(0) = 0\}$ then X is a closed subspace of Y. We have the following

Lemma 1. For any $\lambda \in \mathbb{R}$ the transformation $E_\lambda : u \mapsto \{t \mapsto e^{\lambda t}u(t)\}$ is an isomorphism from X onto X, from Y onto Y, from \mathcal{V} onto \mathcal{V} and from \mathcal{V}' onto \mathcal{V}'.

Proof of Lemma 1: We shall prove that E_λ is an isomorphism from \mathcal{V} onto \mathcal{V}, (in the same way can prove the remaining part of Lemma 1). If $u \in \mathcal{V}$ then the function $\{t \mapsto e^{\lambda t}u(t)\} \in \mathcal{V}$ and $|e^{\lambda t}u(t)|_\mathcal{V} \leq e^{\lambda|T|} |u|_\mathcal{V}$ (because $T < \infty$). But the following is true: $E_{\lambda} \circ E_\lambda = id_\mathcal{V}$, $E_\lambda \circ E_{\lambda} = id_\mathcal{V}$. Thus it follows that E_λ is an isomorphism of Banach spaces.

Let us denote

\begin{equation}
b(t, u, v) := a(t, u, v) + \lambda_0 < u, v >, \quad \text{where } \lambda_0 = c_0 + \frac{nc_1}{2} + 1
\end{equation}

Then $\forall u, v \in V \{t \mapsto b(t, u, v)\}$ is a measurable function and

\begin{align}
\exists c > 0 \quad & |b(t, u, v)| \leq c\|u\| \cdot \|v\|, \quad \forall u, v \in V, t \in [0, T] \\
\Re b(t, u, v) & \geq \|u\|^2, \quad \forall u \in V.
\end{align}
Hence the exists the unique \(B(t) \in \mathcal{L}(V, V') \):

\[
(B(t)u)(v) = b(t, u, v), \quad \forall u, v \in V
\]

Let us notice that \(B(t) = A(t) + \lambda_0 \cdot I \) where \(I: V \rightarrow V' \) is the imbedding from (6). Now we define the operators \(N, M \)

\[
N(v) := \{ t \mapsto B(t)v(t) \} \\
M(v) := \{ t \mapsto A(t)v(t) \}
\]

We shall prove

Lemma 2. \(M, N \in \mathcal{L}(V, V') \) i.e. \(M, N \) are well defined, bounded linear operators from \(L^2(O, T, V) \) to \(L^2(O, T, V') \).

Proof of Lemma 2: Because \(V' \) is isomorphic (in the category of Banach spaces) to Hilbert space \(V \), which is separable and reflexive thus \(V' \) is reflexive and separable, too. From Pettis' Theorem (see [5], p.131) we have that \(M(v) \) is strongly measurable (in Bochner sense) iff \(M(v) \) is weakly measurable (we have fixed \(v \in L^2(O, T, V) \)), i.e.

\[
\text{the function } \{ t \mapsto (Mv)(t)(u) \} \text{ is measurable. } \forall u \in V
\]

We shall prove (19). Let us observe that for any \(u \in V \) \((Mv)(t)(u) = (A(t)v(t))(u) = a(t, v(t), u)\). From the definition of Bochner measurable functions ([5], p.130) there exists a sequence of functions \(\{ v_n \}_{n \in \mathbb{N}} \), \(v_n : [O, T] \rightarrow V \), such that \(v_n \) is finitely valued (i.e.: \(\exists \{ B_j \}_{j=1}^s \) : \(B_j \) is Lebesgue measurable subset of \([0, T] \), \(B_j \cap B_k = \emptyset \) if \(j \neq k \), \(v_n \) is constant on \(B_j \) \(j = 1, \ldots, s \) and \(v_n = 0 \) in the complement of \(\bigcup_j B_j \) and \(v_n(t) \rightarrow v(t) \) as \(n \rightarrow \infty \) a.e. on \([0, T] \). Then, in view of (8), we get that \(a(t, v_n(t), u) \rightarrow a(t, v(t), u) \) a.e. on \([0, T] \). Because the function

\[
[0, T] \ni t \mapsto a(t, v_n(t), u) = a \left(t, \sum_{j=1}^s z_j 1_{B_j}(t), u \right) = \sum_{j=1}^s 1_{B_j}(t)a(t, z_j, u)
\]

\((z_j = v_n|B_j)\) is measurable, thus \(\{ t \mapsto a(t, v(t), u) \} \) is measurable, too. Remaining conditions are in obvious way satisfied, so the proof is completed. ■

From the definitions of the spaces \(Y \) and \(V' \) it follows that the linear operator \(\Lambda \) (defined below in (20)) is continuous.

\[
\Lambda : Y \ni u \mapsto u' \in V'
\]
From the Theorems 1.1 and 4.1 of [3] (chapter 3) we get that the linear operator \(\Lambda + N \) is an isomorphism between \(X \) and \(\mathcal{V}' \).

Remark: The above statement is known and has been proved in [3].

Because \(\Lambda + N \) is a composition of the following maps:

(i) \[X \ni u \mapsto \{ t \mapsto e^{-\lambda_0 t}u(t) \} \in X \quad (= E_{-\lambda_0}) \]

(ii) \[X \ni w \mapsto (\Lambda + N)w \quad (= \Lambda + N) \]

(iii) \[\mathcal{V}' \ni v \mapsto \{ t \mapsto e^{\lambda_0 t}v(t) \} \quad (= E_{\lambda_0}) \]

and each of them is an isomorphism, so

\[
(21) \quad \Lambda + M : X \longrightarrow \mathcal{V}'
\]

is an isomorphism.

The Trace Theorems (see [3] ch. 1, Th. 3.1, 3.2) give us that

\[
(22) \quad \gamma_0 : Y \ni u \mapsto u(0) \in H
\]

is a well defined bounded linear map, which is also onto.

Let us denote

\[
(23) \quad F : Y \ni u \mapsto ((\Lambda + M)u, u(0)) = (\Lambda + M, \gamma_0)(u) \in \mathcal{V}' \times H
\]

We shall prove

Lemma 3. \(F \) is an isomorphism

Proof: Because \(X = \{ u \in Y : \gamma_0 = 0 \} \) so in view of (21) \(F \) is an one-to-one map. Since \(F \) is a coutinous linear map, thus according to the Banach Open Mapping Theorem it is enough to show that \(F \) is onto. Let us take any \(f \in \mathcal{V}' \), \(u_0 \in H \). As \(\gamma_0 \) is onto there exists \(w \in Y : \gamma_0 w = u_0 \). Since \(\bar{f} := f - (\Lambda + M)w \in \mathcal{V}' \), from (21) we get that there exists \(\bar{u} \in X : (\Lambda + M)\bar{u} = \bar{f} \). If we put \(u := \bar{u} + w \) then \(\gamma_0 u = \gamma_0 \bar{u} + \gamma_0 w = u_0 \) and \((\Lambda + M)u = \bar{f} + (\Lambda + M)w = f \).

In the previous part of this paper the functions \(a_i, b \) were fixed, operator \(M \) was defined in such a way that it was dependent on these functions. Let us denote \(a := (b, a_1, \ldots, a_n) \). We can define the functions \(M \) and \(F \) as follows:

\[
(24) \quad M : (L^\infty(\Omega_T))^{n+1} \ni a \mapsto Ma \in \mathcal{L}(Y, \mathcal{V}') \quad F : (L^\infty(\Omega_T))^{n+1} \ni a \mapsto Fa := ((\Lambda + M)a, \gamma_0a) \in \mathcal{L}(Y, \mathcal{V}' \times H)
\]
As we have shown in Lemma 3, for any \(a \in (L^\infty(\Omega_T))^{n+1} \) \(Fa \) is an isomorphism. That means, that for any \(f \in L^2(O,T,V') = L^2(O,T,H^{-1}(\Omega)) \) and for any \(u_0 \in H = L^2(\Omega) \) there exists the unique \(u \in Y \), such that \(u \) is a solution of the following problem:

\[
\begin{aligned}
\frac{du}{dt} + A(t)u(t) &= f(t) \\
u(0) &= u_0
\end{aligned}
\]

(25)

Of course the map \((f, u_0) \mapsto u = F^{-1}(f, u_0)\) is analytic (because it is linear and continuous). We shall show, that \(u \) depends in a similar on the coefficient \(a \). To do this we define

\[
G: (L^\infty(\Omega_T))^{n+1} \times Y \ni (a, u) \mapsto F(a)u \in V' \times H
\]

(26)

Lemma 4. \(G \) is an analytic function and

\[
"d_{(a,u)}G = \frac{\partial G}{\partial u} (a,u) = F(a) \in \mathcal{L}(Y, V' \times H)
\]

(27)

Proof: Since \(G(a, u) = (M(a)u + \Lambda u, \gamma_0 u) \) it is enough to show that the map \((a, u) \mapsto M_1(a)u\) is analytic, where

\[
M_1(a)u := \sum_{i=1}^{n} a_i D_i u + bu = M(a)u + \Delta u
\]

(28)

(because \(-\Delta\) is a continuous linear map from \(Y \) to \(V' \))

The map in (28) is bilinear, so if we prove that it is continuous the proof will be finished. Hence we have to show that the maps

\[
L^\infty(\Omega_T) \times Y \ni (a, u) \mapsto a \cdot D_j u \in \mathcal{H} = L^2(O,T,H) \quad j = 1, \ldots, n
\]

\[
L^\infty(\Omega_T) \times Y \ni (b, u) \mapsto b \cdot u \in \mathcal{H}
\]

are continuous. But this follows from the continuity of the linear maps

\[
D_j: H^1_0(\Omega) \ni u \mapsto D_j u = \frac{\partial u}{\partial x_j} \in L(\Omega) = H
\]

\[
D_j: L^2(O,T,V) = L^2(O,T,H^1_0(\Omega)) \ni u \mapsto D_j u = \frac{\partial u}{\partial x_j} \in L^2(O,T,L^2(\Omega))
\]

In this way we have proved
Theorem 1. The map G defined in (26) is analytic and its partial derivative with respect to Y (at any point (a, u)) \(^{''}d_{(a, u)}G = F(a)\) is an isomorphism between Y and $Y' \times H$.

We shall need the following version of the implicit function theorem

Theorem 2. Let us assume that X, Y, Z are Banach spaces, U is an open subset of $X \times Y, (a, b) \in U, f: U \to Z$ is of \mathcal{C}^k ($k \in \mathbb{N} \cup \{\infty\}$) (or f is analytic), $f(a, b) = c$

\[
^{''}d_{(a, b)}f = \frac{\partial f}{\partial y}(a, b) \in \mathcal{L}(Y, Z)
\]

is an isomorphism between Y and Z. Then there exist:
- $K -$ a neighbourhood of (a, b, c) in $U \times Z$
- $L -$ a neighbourhood of (a, c) in $X \times Z$
- a function $g: L \to Z$ of class \mathcal{C}^k (or analytic) such that

\[
(x, y, z) \in K, z = f(x, y) \Leftrightarrow (x, z) \in L, \quad y = g(x, z)
\]

Moreover

\[
\frac{\partial g}{\partial x}(a, b) = -\left(\frac{\partial f}{\partial y}(a, b)\right)^{-1} \circ \frac{\partial f}{\partial x}(a, b)
\]

\[
\frac{\partial g}{\partial z}(a, c) = \left(\frac{\partial f}{\partial y}(a, b)\right)^{-1}
\]

Proof: We shall use the classical version of this theorem (see [2], p.61).

Let us define:

\[
F: U \times Z \rightarrow Z \quad (x, y, z) \mapsto f(x, y) - z
\]

Then $F(a, b, c) = 0$ and $\frac{\partial F}{\partial y}(a, b, c) = \frac{\partial F}{\partial y}(a, b)$ is an isomorphism between Y and Z. Hence there exist:
- $K -$ a neighbourhood of (a, b, c) in $U \times Z$
- $L -$ a neighbourhood of (a, c) in $X \times Z$
- a function $g: L \to Z$ of class \mathcal{C}^k (or analytic) such that

\[
(x, y, z) \in K, z = f(x, y) \Leftrightarrow (x, z) \in L, y = g(x, z)
\]

and

\[
\frac{\partial g}{\partial z}(a, c) = -\left(\frac{\partial F}{\partial y}(a, b, c)\right)^{-1} \circ \frac{\partial F}{\partial z}(a, b, c) = \left(\frac{\partial f}{\partial y}(a, b)\right)^{-1}
\]

\[
\frac{\partial g}{\partial x}(a, c) = -\left(\frac{\partial F}{\partial y}(a, b, c)\right)^{-1} \circ \frac{\partial F}{\partial x}(a, b, c)
\]

\[
= -\left(\frac{\partial f}{\partial y}(a, b)\right)^{-1} \circ \frac{\partial f}{\partial x}(a, b)
\]

As a simple consequence we have the following
Corollary 1. Let \(f : X \times Y \rightarrow Z \) be a \(C^k \) (respectively analytic) map such that for any \(a \in X \), \(f(a, \cdot) \) is one to one from \(Y \) onto \(Z \), and \(\forall (x, y) \in X \times Y \) \(\frac{\partial f}{\partial y}(x, y) \) is an isomorphism between \(Y \) and \(Z \).

Then there exists a \(C^k \) (respectively analytic) function \(P : X \times Z \rightarrow Y \) such that

\[
P(x, z) = y \iff f(x, y) = z, \quad \forall (x, y, z) \in X \times Y \times Z
\]

Proof: If \((a, c) \in X \times Z \) then there exists \(b \in Y \) : \(f(a, b) = c \). Let \(L, K, g \) be as in the conclusion of Theorem. We define

\[
P(x, z) := g(x, z) \quad \text{if} \ (x, z) \in L
\]

It is enough to show that \(P \) is well defined.

If there existed points \((a_1, c_1), (a_2, c_2) \in X \times Z \) and their neighbourhoods \(L_1, L_2 \) such that for some point \((x, z) \in L_1 \cap L_2 \) we had \(y_1 = g_1(x, z) \neq y_2 = g_2(x, z) \) then by (29) we would have \(z = f(x, y_1) \) and \(z = f(x, y_2) \). Thus obtained contradiction concludes the proof. \(\blacksquare \)

From Theorems 1 and 2 we get immediately the main result of this paper.

Theorem 3. The mapping

\[
P : L^2(O, T; H^{-1}(\Omega)) \times L^2(\Omega) \times (L^\infty(\Omega_T))^{n+1} \rightarrow Y
\]

that maps any triple \((f, u_0, a)\) into \(u \), the unique solution in \(Y \) of the problem (25), where \(Y \) is defined in (14), is analytic. It satisfies

\[
P(f, u_0, a) = u \iff G(a, u) = (f, u_0) \iff u \text{ is the unique solution to (25)}
\]

for any \(f, u_0, u \) in an appropriate space.

Corollary 2. Assume that \(E \) is an open subset of some Banach space and a function

\[
\Phi : E \ni \lambda \rightarrow (f(\lambda), u_0(\lambda), a(\lambda)) \in L^2(O, T; H^{-1}(\Omega)) \times L^2(\Omega) \times (L^\infty(\Omega_T))^{n+1}
\]

is a \(C^k \) (respectively analytic). For fixed \(\lambda \in E \) let \(u(\lambda) = u(t, x, \lambda) \in Y \) denotes the unique solution to the following, parametrized version of (25),

\[
u'(t, x, \lambda) - \Delta u(t, x, \lambda) + \sum_{j=1}^{n} a_j(\lambda) D_j u(t, x, \lambda) + b(\lambda) u(t, x, \lambda) = f(\lambda)
\]

\[
u(0, \cdot, \lambda) = u_0(\cdot, \lambda)
\]
Then the mapping $E \ni \lambda \rightarrow u(\lambda) \in Y$ is C^k (respectively analytic).

Some extensions

1° We may consider a generalized version of equation (1) where the Laplacian Δ is replaced by a more general elliptic second order differential operator, i.e.:

$$
\frac{\partial u(t, x)}{\partial t} - \sum_{i,j=1}^{n} \frac{\partial}{\partial x_i} \left(a_{ij}(t, x) \frac{\partial u(t, x)}{\partial x_i} \right) \\
+ \sum_{i=1}^{n} a_i(t, x) \frac{\partial u(t, x)}{\partial x_i} + b(t, x) u(t, x) = f(t, x)
$$

(1')

together with the same initial and boundary conditions (2), (3).

We keep all the assumptions concerning the coefficients a_i, b, f and moreover we assume that

$$
a_{ij} \in L^\infty(\Omega_T)
$$

(4')

$$
\exists c_0 > 0: \Re \sum_{i,j=1}^{n} a_{ij}(t, x) \xi_i \xi_j \geq |\xi|^2, \quad \forall \xi \in \mathbb{C}^n, \quad a.s. \text{ on } \Omega_T
$$

(4'')

(strong uniform ellipticity).

Then we define $a(t, \cdot, \cdot)$ by the formula

$$
a(t, u, v) = \sum_{i,j=1}^{n} \int_{\Omega} a_{ij}(t, x) D_j u(x) \overline{D_i v(x)} \, dx \\
+ \int_{\Omega} b(t, x) u(x) \overline{v(x)} \, dx + \sum_{i,j=1}^{n} \int_{\Omega} a_i(t, x) D_i u(x) \overline{v(x)} \, dx
$$

(7')

It is easy to see that (8), (9), (12) are satisfied. After defining M as in (18) we can easily show that Lemma 3 is still valid.

Next we consider

$$
Q := \left\{ (a_{ij})_{i,j=1}^{n} \in (L^\infty(\Omega_T))^n : (4'') \text{ is satisfied} \right\}
$$

(37)

and observe that Q is an open subset of $(L^\infty(\Omega_T))^n$. We define

$$
F: Q \times (L^\infty(\Omega_T))^n \ni ((a_{ij}), (a_i), b) \\
\rightarrow (\Lambda + M((a_{ij}), (a_i), b); \gamma_0 \in L(Y, \mathcal{V}'' \times H))
$$

(24')
If G is defined as in (26) then Lemma 4 and Theorem 1 are still valid. Using Theorem 2 we get the following versions of Theorem 3 and Corollary 2.

Theorem 4. The mapping

$$
\tilde{P} : L^2(O,T; H^{-1}(\Omega)) \times L^2(\Omega) \times (L^\infty(\Omega_T))^{n+1} \to Y
$$

that maps any triple (f, u_0, a) into u, the unique solution in Y of the problem (1'), (2), (3), where Y is defined in (14), is analytic. It satisfies

$$
P(f, u_0, a) = u \iff G(a, u) = (f, u_0) \iff u \text{ is the unique solution to (1'),(2),(3)}
$$

for any f, a, u_0, u in the appropriate space.

Corollary 3. Assume that E is an open subset of some Banach space and $\Phi : E \to W$, where $W = L^2(O,T; H^{-1}(\Omega)) \times L^2(\Omega) \times (L^\infty(\Omega_T))^{n+1}$ is a C^k(respectively analytic) mapping. Let for fixed $\lambda \in E, u(\lambda) \in Y$ denotes the unique solution to problem (1'), (2), (3), where f, u_0, a_{ij}, a_i, b are replaced by $f(\lambda), u_0(\lambda), a_{ij}(\lambda), a_i(\lambda), b(\lambda)$ respectively and $\Phi(\lambda) = (f(\lambda), u_0(\lambda), (a_{ij}(\lambda)), (a_i(\lambda)), b(\lambda))$

then the map $E \ni \lambda \to u(\lambda) \in Y$ is C^k (respectively analytic).

2^o One can seek more regular solution to problem (1) – (3). In that case the functional spaces Y, W, \ldots should be redefined.

For example let us show that Theorem 3 is still valid in the case of linearized Navier – Stokes Equations. We use the notation of [4]. Let Ω be an open bounded subset of \mathbb{R}^n, with boundary $\partial \Omega$ of class C^2. We denote by H and V respectively the closure of $\{ \phi \in C_0^\infty(\Omega, \mathbb{R}^n) : div \phi = 0 \}$ in $(L^2(\Omega))^n$ and $(H^1_0(\Omega))^n$ respectively. Next we put $H^2 = V \cap (H^2(\Omega))^n$ and let $H^{1,2}(O,T)$ denotes the Hilbert space of all Bochner measurable function from (O,T) into H^2 such that

$$
\int_0^T |u(t)|^2_{H_2} dt < \infty, \quad \int_0^T |u'(t)|^2_H dt < \infty
$$

where $u'(t)$ is the derivative of u (as an H valued function) in a distributional sense.

Let us denote by π the orthogonal projection of $(L^2(\Omega))^n$ onto H.

We put

$$
\tilde{B}(u, v) := \frac{1}{2} \pi \left(\sum_{j=1}^n u^j D_j v + v^j D_j u \right), \quad u, v \in H^2
$$

$$
Au := -\pi \Delta u, \quad u \in H^2
$$
\(\tilde{B} \) is a bilinear continuous map from \(H^2 \times H^2 \) into \(H \), \(A \) is a bounded linear transformation from \(H^2 \) into \(H \), see [5].

For fixed \(\nu > 0, a \in \mathcal{H}^{1,2}(O,T), u_0 \in V \) and \(f \in L^2(O,T;H) \), we look for a function \(u \in \mathcal{H}^{1,2}(O,T) \) which is the solution to the following problem

\[
\begin{align*}
 u'(t) + \nu Au(t) + \tilde{B}(a(t), u(t)) &= f(t) \\
 u(0) &= u_0
\end{align*}
\]

(42)

It can be proved, see [1] for example, that a mapping \((\Phi(a, \nu), \gamma_0) \) defined by

\[\mathcal{H}^{1,2}(O,T) \ni u \rightarrow (u' + \nu Au + \tilde{B}(a,u), u(0)) \in L^2(O,T;H) \times V \]

is an isomorphism. Since the function

\[G: (0, \infty) \times \mathcal{H}^{1,2}(0,T) \times \mathcal{H}^{1,2}(0,T) \ni (\nu, a, u) \rightarrow \Phi(a, \nu)u \in L^2(0,T;H) \]

is analytic and

\[\frac{\partial G}{\partial u}(\nu, a, u) = \Phi(a, \nu) \]

we infer that the following is true

Theorem 5. The mapping

\[P: L^2(0,T;H) \times V \times (0, \infty) \times \mathcal{H}^{1,2}(0,T) \rightarrow \mathcal{H}^{1,2}(0,T) \]

that maps any quadrupole \((f, u_0, \nu, a) \) into \(u \), the unique solution in \(\mathcal{H}^{1,2}(0,T) \) of the problem (42), is analytic. It satisfies

\[P(f, u_0, \nu, a) = u \Leftrightarrow G(\nu, a, u) = (f, u_0) \Leftrightarrow u \]

is the unique solution to (42) for any \(f \in L^2(0,T;H), (\nu, a) \in (0, \infty) \times \mathcal{H}^{1,2}(0,T), u_0 \in V, u \in \mathcal{H}^{1,2}(0,T) \).

The author would like to thank Professor Boleslaw Szafirski for statement of the problem and help during writing this paper.

References

Received October 1, 1985