NOTES ON CIRCULAR OPERATORS II

BY W. MLAK

Abstract. The present note concerns the commutation relation $e^{-itA}Te^{itA}$ $= e^{iat}T$, where $T \in L(H)$ and A is a selfadjoint operator within the Hilbert space H. We prove several decompositions related to the interplay between A and T.

1. We say that the operator $T \in L(H)$ is an (A, α) operator, if

(1.0) $e^{-itA}Te^{itA} = e^{iat}T$

for all real t, A is selfadjoint, α is a real number and $\alpha \neq 0$. The one-parameter group $U(t) = e^{itA}$ is called the circulating group, and T is called circular.

If T is an (A, α) operator then:

(1.1) $e^{-itA}T^n e^{itA} = e^{i\alpha nt}T^n$, $t \in \mathbb{R}$,

(1.2) $e^{-itA}T^{-m} e^{itA} = e^{-i\alpha nt}T^{-m}$, $t \in \mathbb{R}$,

for $n, m = 1, 2, 3, 4, \ldots$. It follows that for all $t \in \mathbb{R}$ and $n, m = 1, 2, 3, \ldots$,

(1.3) $e^{-itA}T^{-m}T^n e^{itA} = e^{i\alpha(n-m)t}T^{-m}T^n$;

(1.4) $e^{-itA}T^n e^{itA} = e^{i\alpha(n-m)t}T^n T^{-m}$;

It follows from Prop. 1.0 of [9] that (1.3) and (1.4) are equivalent respectively to the following conditions:

(1.3') $T^{-m}T^n D(A) \subset D(A)$ and

$[T^{-m}T^n, A]f = \alpha(n - m)T^{-m}T^n f$ for $f \in D(A)$;

(1.4') $T^n T^{-m} D(A) \subset D(A)$ and

$[T^n T^{-m}, A]f = \alpha(n - m)T^n T^{-m} f$ for $f \in D(A)$.

Notice that the operators \(T^n T^*n \) and \(T^*n T^n \) commute with \(A \), provided that \(T \) is an \((A, \alpha)\) operator.

Some examples of circular operators are now in order.

Example 1. Let \(H = \mathbb{C}^2 \) and take Pauli matrices

\[
\sigma_2 = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}, \quad \sigma_+ = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}.
\]

Then \(e^{it \sigma_2} \sigma_+ e^{-it \sigma_2} = e^{it} \sigma_+ \) for all real \(t \).

Example 2. Let \(\{e_n\} \) \(n = 0, 1, 2, \ldots \) be the basis of the separable space \(H \). The quantum number operator \(N \) is defined by the equalities \(N e_n = n e_n \) \((n = 0, 1, 2, \ldots) \) i.e. \(D(N) = \left\{ f : \sum_{n=0}^{\infty} n^2 |(f, e_n)|^2 < +\infty \right\} \) and \(N f = \sum_{n=0}^{\infty} n(f, e_n)e_n \). It follows that \(N \) is a selfadjoint operator. Since for \(n = 0, 1, 2, \ldots, e^{itN} e_n = e^{int} e_n \), we have \(e^{-itN} W e^{itN} e_n = e^{-itW} e_n \) for \(n = 0, 1, 2, \ldots \) where the bounded weighted shift \(W \) is defined by formulae \(W e_n = w_n e_{n+1} \) \((n = 0, 1, 2, \ldots) \) with bounded sequence \(\{w_n\} \). It follows that \(W \) is a \((N, -1)\) operator.

Example 3. Suppose \(\mu \) is a positive measure on Borel subsets of \([0, 1]\), such that \(\mu(\{0\}) = \mu(\{1\}) = 0 \). We define \(\mu = \bigoplus_{n=0}^{\infty} \mu_n \) and write \(H = L^2(\mu; [0, +\infty)) \). Let the operator \(A \) be defined by the formula \((Af)(s) = sf(s)\) for \(f \in H \) such that \(\int_0^{\infty} |sf(s)|^2 \, d\mu_s < +\infty \). If \(V \) is defined as the unilateral shift i.e. \((Vf)(s) = 0\) for \(s \in [0, 1] \) and \((Vf)(s) = f(s - 1)\) for \(s \geq 1 \), then \(e^{-itA} Ve^{itA} = e^{-itV} \) - it follows that \(V \) is an \((A, -1)\) operator. Notice that \(\mu \) is "periodic" but can be equal to Lebesgue measure, as well as to a pretty singular measure living on Cantor set of positive Lebesque measure. It follows that the spectral type of the spectral measure of \(A \) is not determined by the commutation relation and the property that \(V \) is an isometry. If we take \(\bigoplus \mu_n = \mu \) and define \(A \) as the multiplication operator \(- (Af)(s) = sf(s)\), and \(V \) the bilateral shift i.e. \((Vf)(s) = f(s - 1), -\infty < s < +\infty\), then \(V \) is \((A, -1)\) operator and the spectral features of \(U(t) = e^{itA} \) are not unique. The moral is that there is no available analogon of J. V. Neumann's uniqueness theorem for Weyl's commutation relations for circular relations.
2. Suppose that the operator $T \in L(H)$ is an (A, α) operator. It follows then that for all real t

$$e^{-itA} (\Re T) e^{itA} = e^{-itA} \frac{1}{2} (T + T^*) e^{itA}$$

$$= \frac{1}{2} \left(e^{i\alpha t} T + e^{-i\alpha t} T^* \right)$$

$$= \frac{1}{2i} \left(i e^{i\alpha t} T + i e^{-i\alpha t} T^* \right).$$

When taking $t_0 = \frac{3}{2\alpha} \pi$ we infer that the following statement holds true:

(2.0) If T is an (A, α) operator, then $\Re T$ and $\Im T$ are unitarily equivalent, namely

$$e^{-i \frac{3}{2\alpha} \pi A} \cdot \Re T \cdot e^{i \frac{3}{2\alpha} \pi A} = \Im T.$$

The above theorem generalizes a result of Ifantis [1], who proved if for weighted shifts by direct arguments, avoiding the commutation relation. His result follows from our Example 2 of the previous section and from (2.0) – (2.1). It follows now from (1.3) and (1.4) that the following property holds true;

(2.2) If $T \in L(H)$ is an (A, α) operator, then $\Re T^n T^{* -m}$ and $\Im T^n T^{* -m}$ are unitarily equivalent if $n \neq m$; $n, m = 1, 2, 3, \ldots$. In particular, $\Re T^n T^{* -m}$ and $\Im T^n T^{* -m}$ are equivalent, if $n \neq m$ and T is a weighted shift,

Recall now that the operator $T \in L(H)$ is called semi-normal, if either $TT^* \leq T^* T$ or $T^* T \leq TT^*$.

We denote by $\sigma(Q)$ the spectrum of the operator $Q \in L(H)$.

Let us define the functions $p_X(z) = \Re z$, $p_Y(z) = \Im z$ for complex z. This is Putnam’s theorem – [4], [5], which reads as follows:

(P) If $T \in L(H)$ is a seminormal operator, then $\sigma(\Re T) = p_X(\sigma(T))$, $\sigma(\Im T) = p_Y(\Im T)$.

Recall now that the spectral radius $r(Q)$ of a semi-normal operator Q equals to $\|Q\|$. Suppose now that T is semi-normal and let T be an (A, α) operator. Take $\lambda \in \sigma(T)$ such that $|\lambda| = \|T\|$. Since T is circular, the circle $\{z: |z| = \|T\|\} \subset \sigma(T)$. It follows now from (P) and (2.0) that the following proposition holds true:

Proposition 2.0. Suppose that the semi-normal operator T is an (A, α) operator. Then $\sigma(\Re T) = \sigma(\Im T) = [-r(T), r(T)]$.

The above proposition essentially generalizes the results of [1], [2], for special T, namely hyponormal weighted shifts of multiplicity one.
Suppose now that the seminormal operator T is pure i.e. has no non-zero reducing normal part. This is the other theorem of Putnam – [4], [5], which says what follows:

(P_0) If T is a pure seminormal operator, then $\operatorname{Re} T$ and $\operatorname{Im} T$ have an absolutely continuous spectrum.

We derive therefore the important completion of Prop. 2.0 which reads as follows:

(P_1) If T is a pure seminormal (A, α) operator, then $\operatorname{Re} T$ and $\operatorname{Im} T$ have Lebesgue spectrum.

It follows from (P_1) that for seminormal, pure T of class (A, α) the parts $\operatorname{Re} T, \operatorname{Im} T$ have no point spectrum – this is an extension of results of [1], [2].

Some other spectral properties of circular operators are now in order. To begin with we define the parts of the spectrum of T as follows:

\[
\begin{align*}
\sigma_p(T) &= \text{the point spectrum of } T; \\
\sigma_a(T) &= \text{approximate spectrum of } T; \\
\sigma_r(T) &= \text{residual spectrum of } T; \\
\sigma_c(T) &= \text{continuous spectrum of } T.
\end{align*}
\]

Suppose that T is an (A, α) operator. Then for $t \in \mathbb{R}^1$ the operator $e^{it}T$ is unitarily equivalent with T. Since $\sigma_s(T)$ for $s = p, a, r, c$ is a unitary invariant, then the following proposition is true:

PROPOSITION 2.1. Suppose that $T \in L(H)$ is an (A, α) operator. Then for $s = p, a, r, c$ we have $e^{it}\sigma_s(T) = \sigma_s(T)$ for $t \in [0, 2\pi]$.

Simply, each part $\sigma_s(T)$, $s = p, a, r, c$ of the spectrum of T is circled.

CONCLUSION: if $\dim H < +\infty$ then $\sigma(T) = \{0\}$.

This is the classical result of F. Riesz, which states what follows:

(F) If $T \in L(H)$, $Tf = zf$ and $|z| = ||T||$, then $T^*f = \overline{zf}$; if $z_1 \neq z_2$, $|z_1| = |z_2| = ||T||$ and $Tf_k = z_kf_k$ ($k = 1, 2$), then $f_1 \perp f_2$.

PROPOSITION 2.2. Suppose that the nonzero operator $T \in L(H)$ is of class (A, α). Then there is no $z \in \sigma_p(T)$, such that $|z| = ||T||$ and consequently, no $u \in \sigma_r(T)$ such that $|u| = ||T||$.

PROOF: Suppose that $|z| = ||T||$ and $Tf = zf, f \in H$. Since

\[e^{-itA}Te^{itA}f = e^{it}Tf = e^{it}zf,\]
then \(T f(t) = e^{i\alpha t} z f(t) \), where \(f(t) = e^{it\Lambda} f \), for all real \(t \). We take \(\varepsilon > 0 \) sufficiently small and such that if \(0 < |t| < \varepsilon \), then \(e^{i\alpha t} \neq 1 \), as well \(t_1 \neq t_2 \), \(0 < |t_1| < \varepsilon \), \(0 < |t_2| < \varepsilon \) and \(e^{i\alpha t_1} \neq e^{i\alpha t_2} \). It follows from (F) that \(f(t_1) \perp f(t_2) \). By taking \(t_1 \to 0 \), \(t_2 \to 0 \) we get that \(f(0) = f = 0 \).

To complete the proof, we notice merely that if \(u \in \sigma_r(T) |u| = \|T\| \), then \(\bar{u} \in \sigma_p(T^*) \). Since \(T^* \) is an \((A, -\alpha)\) operator, the assertion follows from the first part of our proposition.

Remark 2.0. If \(T \) is an \((A, \alpha)\) operator and some \(z \in \sigma_c(T) \) and \(|z| = \|T\| \), then \(\{u: |u| = \|T\|\} \subset \sigma_c(T) \).

The lack of the point spectrum on the circle \(\{z: |z| = \|T\|\} \) of the \((A, \alpha)\) operator \(T \in L(H) \) has some deep spectral reasons. Recall namely that by the celebrated Sz.-Nagy theorem – [7], [8], if \(T \) is a contraction i.e. if \(\|T\| \leq 1 \), then there is the unique semi–spectral measure \(F \) on Borel sets of the unit circle \(\Gamma \), such that

\[
(S) \quad T^n = \int_{\Gamma} z^n \, dF_z \quad \text{for} \quad n = 0, 1, 2, \ldots
\]

The last integral is the semi–spectral integral in the strong operator topology. Moreover, the part of point spectrum

\[
\sigma_p(T)_{\Gamma} = \{z: z \in \sigma_p(T), z \in \Gamma\}
\]

is characterized by the equality

\[
(2.3) \quad \sigma_p(T) = \{z: |z| = 1, F(\{z\}) \neq 0\} ;
\]

and for \(z \) such that \(|z| = 1 \) we have

\[
(2.4) \quad \operatorname{Ker}(zI - T) = \{f: F(\{z\})f = f\} .
\]

Supposing that the contraction \(T \) is an \((A, \alpha)\) operator, we derive from (S) that for \(f \in H \)

\[
(2.5) \quad \int_{\Gamma} z^n \, d (F_z e^{i\alpha t} f, e^{i\alpha t} f) = \int_{\Gamma} z^n \, d (F_z e^{i\alpha t} f, f) ,
\]

for \(n = 0, 1, 2, \ldots \) and the measure \(F_{\alpha, t}(\sigma) = F(e^{-i\alpha t} \sigma) \), for Borel sets \(\sigma \) on \(\Gamma \). Since the scalar measures in (2.5) are positive ones, then

\[
(2.6) \quad e^{-it\Lambda} F(\sigma) e^{it\Lambda} = F(e^{-i\alpha t} \sigma)
\]

for all \(t \) and Borel subsets \(\sigma \) of \(\Gamma \).
3. The present section deals with decomposition of circular operators. To begin with we recall the canonical decomposition of contractions — see [7], [8]. Let \(T \in L(H) \) be a contraction that is \(\|T\| \leq 1 \). We define the space

\[
H_n = \{ f : \|T^n f\| = \|f\| = \|T^* f\| \text{ for } n = 0, 1, 2, 3, \ldots \}
\]

The space \(H_u \) reduces \(T \) to the unitary operator \(T_u \). The subspace \(H_c = H \ominus H_u \) reduces \(T \) to the completely non-unitary operator \(T_c \), that is there is no non-zero subspace of \(H_c \) which reduces \(T \) to a unitary operator. It follows that \(T = T_u \oplus T_c \); this is the canonical decomposition of the contraction \(T \).

Proposition 3.0. Suppose that the contraction \(T \) is an \((A, \alpha)\) operator. Then \(H_u \) and \(H_c \) reduce \(A \) to \(A_u \) and \(A_c \) respectively and \(T_u \) is an \((A_u, \alpha)\) operator and \(T_c \) is an \((A_c, \alpha)\) operator.

Proof: Suppose that \(f \in H_u \). Since

\[
e^{-itA} T_u e^{itA} f = e^{i\alpha t} T^n f \quad \text{and} \quad e^{-itA} T^*_n e^{itA} f = e^{-i\alpha t} T^*_n f
\]

for \(n = 0, 1, 2, \ldots \), so \(\|T^*_n e^{itA} f\| = \|T^n f\| = \|f\| = \|T^*_n f\| = \|T^*_n e^{itA} f\| = \|e^{itA} f\| \), for each \(t \) and for any integer \(n \geq 0 \). It follows that \(H_u \) reduces \(e^{itA} \) for all \(t \). It follows that \(H_c \) reduces \(e^{itA} \) for all \(t \); Let \(A_u \) be the part of \(A \) in \(H_u \) and \(A_c \) the part of \(A \) in \(H_c \). It is plain now that \(T_u(c) \) is of \((A_u(c), \alpha)\) class, that is \(e^{-itA_u} T_u e^{itA_u} = e^{i\alpha t} T_u \) and \(e^{-itA_c} T_c e^{itA_c} = e^{i\alpha t} T_c \) for all \(t \).

Notice now that by the results of our first note, there is no unitary operator of class \((A, \alpha)\), if \(A \) is semi-bounded, that is \(A \) is bounded below or bounded above.

It follows now from Prop. 3.0 that the following theorem holds true:

Theorem 3.0. Suppose that the operator \(A = A^* \) is semi-bounded. Then every contraction of class \((A, \alpha)\) is completely non-unitary.

It is proved in [9], that a unitary \((A, -1)\) operator is a bilateral unitary shift. The proof uses the spectral theorem for \(A \); as the by – product of the proof one proves then easily our Th. 3.0. However, our proof here is spectral free. A natural problem arises, namely what about the isometric operators of \((A, \alpha)\) class, when \(A \) is semi-bounded. It follows from our above theorem that \(V \) must be a unilateral isometric shift. But by results of our first note, one infers that no isometric \((A, \alpha)\) operator exists, if \(H \neq 0 \) and \(A \) is bounded below and \(\alpha > 0 \). It follows then that the following theorem holds true:
Theorem 3.1. If the selfadjoint operator A is bounded below, and V is an (A, α) isometric operator, then V is a unilateral isometric shift if $\alpha < 0$.

Now, if A is bounded above and $e^{-itA}Ve^{itA} = e^{i\alpha t}V$ for all t, then $e^{-it(-A)}Ve^{it(-A)} = e^{-i\alpha t}V$ for all t. It follows then that $e^{-it(-A)}Ve^{it(-A)} = e^{i(-\alpha t)}V$ for all t. $B = (-A)$ is bounded below. By the above theorem we infer the following:

Corollary 3.0. If the isometric operator $V \in L(H)$ is an (A, α) operator and A is bounded above and $\alpha > 0$, then V is a unilateral isometric shift.

To complete our discussion concerning isometric circular operators, we assume that $V \in L(H)$ is a unilateral shift in H and moreover V is an (A, α) operator. Then $P_n = V^nV^* - V^{n+1}V^{*n+1}$ is the orthogonal projection on the subspace $H_n = V^n(H \ominus VH)$. Then the following conditions hold true:

(3.0) H_n reduces A for $n = 0, 1, 2, \ldots$ to the operator A_n;

(3.1) $A = \bigoplus_{n=0}^{\infty} A_n$;

(3.2) $e^{-itA_n+1}VP_ne^{itA_n}f = e^{-itA_n+1}Ve^{itA_n}P_nf = e^{i\alpha t}VP_nf$ (t arbitrary)

for all $f \in H$ and $n = 0, 1, 2, \ldots$;

(3.3) A_n is unitarily equivalent to $(A_0 - n\alpha I)$ for $n = 0, 1, 2, \ldots$.

The above conditions complete the description of unilateral isometric shifts as (A, α) operators.

The next topic concerns the relationships between circularity and the canonical decompositions involving the "normality" properties of operators.

We assume that $T \in L(H)$ and define

$$H_n = \bigcap_{p,q \geq 0} \{f \in H : T^pT^*qf = T^*qT^pf\}.$$

The subspace H_n reduces the operator T to a normal operator and the subspace $H_p \overset{df}{=} H \ominus H_n$ reduces T to the pure operator T_p. The subspace $H_0 = \{f : Tf = 0 = T^*f\} \subset H_n$ reduces T to the zero operator T_0. Then
\(T_n = \) the part of \(T\) in \(H_n \ominus H_0\) is an invertible normal operator. Summing up, we get that

\[(3.4)\]
\[T = T_0 \oplus T_n \oplus T_p ,\]

where \(T_0\) is a zero operator, \(T_n\) is an invertible normal operator and \(T_p\) is a pure operator.

Suppose now that \(T \in L(H)\) is an \((A, \alpha)\) operator. It follows that if \(f \in H_0\), then \(T e^{i\lambda t} f = 0\) and \(T e^{i\alpha t} f = 0\) for all real \(t\). Consequently \(H_0\) reduces \(A\). Let \(A_0\) be the part of \(A\) in \(H_0\).

If \(f \in H_n\), then by \((1.3)\) and \((1.4)\) we have by definition of \(H_n\) the equalities

\[T^{\ast q} T^p e^{i\lambda t} f = e^{-i\alpha(q-p)t} e^{i\lambda t} T^{\ast q} T^p f\]

\[T^p T^{\ast q} e^{i\lambda t} f = e^{i\alpha(p-q)t} e^{i\lambda t} T^p T^{\ast q} f\]

and \(T^p T^{\ast q} f = T^{\ast q} T^p f\) \((p,q = 0,1,2,\ldots)\). It follows that \(T^{\ast q} T^p e^{i\lambda t} f = T^p T^{\ast q} e^{i\lambda t} f\) for any \(p,q\) and for all \(t\). This means that \(H_n\) reduces \(e^{i\lambda t} A\), because \(H_0\) does. Indeed if \(T f = 0 = T^\ast f\) then since \(0 = e^{i\alpha t} T f = e^{-i\lambda A T e^{i\lambda t} A f}\)

and

\[0 = e^{-i\alpha t} T^\ast f = e^{-i\lambda A T^\ast e^{i\lambda t} A f},\]

then \(H_0\) reduces \(A\), say to \(A_0\). It follows now that \(H_p\) reduces \(A\). We denote by \(A_p\) the part of \(A\) in \(H_p\).

Summing up, we get that

\[(3.5)\]
\[A = A_n \oplus A_0 \oplus A_p\]

and

\[(3.6)\]
\[T = T_n \oplus T_0 \oplus T_p\]

where \(T_0\) is an \((A_0, \alpha)\) operator for \(s = n, 0, p\), and \(T_n\) is an invertible normal operator.

It is plain that nothing interesting happens with \(T_0\). In what follows we deal merely with \(T = T_n \oplus T_p\), where \(T_n\) is an invertible normal operator and \(T_p\) a pure one. This means that we assume that \(H = H_n \oplus H_p\).

Suppose that \(T \in L(H)\). Then \(T\) has the polar decomposition \(T = Q|T|\) where \(Q\) is a partial isometry and \(|T| = (T^\ast T)^{\frac{1}{2}}\). This decomposition is unique, if

\[(3.7)\]
\[\text{Ker } T = \text{Ker } |T| = \text{Ker } Q ;\]

We since now always assume that \((3.7)\) holds true. Suppose that \(T\) is an \((A, \alpha)\) operator. It follows then that \(T^\ast T\) commute with \(A\), and consequently \(|T|\) commutes with \(A\). It follows that \(\overline{R(|T|)}\) reduces \(e^{i\lambda A}\) and \(Q e^{i\lambda A}\) vanishes on \(\text{Ker } |T| = \text{Ker } Q\). It follows then that \(e^{-i\lambda A} Q e^{i\lambda A} |T| f = e^{i\alpha Q} |T| f\) for \(f \in H\), and consequently \(e^{-i\lambda A} Q e^{i\lambda A} g = e^{i\alpha Q} g\) for all \(g \in H\). Summing up we proved the following proposition:
Proposition 3.1. Let $T \in L(H)$ be of class (A, α) and let $T = Q|T|$ be the polar decomposition of T, where $\text{Ker } |T| = \text{Ker } Q = \text{Ker } T$. Then Q is an (A, α) operator.

Remark. It is plain that the $\text{Ker } T = \text{Ker } |T| = \text{Ker } Q$ is almost needles for the knowledge of T as a circular operator. It is then obvious that invertible circular operators are of some interest in the general theory. In this case $H = \overline{R(|T|)} = (\text{Ker } T)^\perp$. Suppose that the above T equals to $T_n \oplus T_p$, where T_n is an invertible normal operator and T_p is pure. If T is an (A, α) operator, then T_n and T_p are (A, α) operators. Let $T_n = Q_n |T_n|$ be the polar decomposition of T_n; $\text{Ker } Q_n = \text{Ker } T_n = \{0\} = \text{Ker } Q_n^* = \text{Ker } T_n^*$ because T_n^{-1} and T_n^{-1} exist. It follows that Q_n is a unitary operator. Hence by Th. 2.1 of [6] and Prop. 3.1 we arrive to the following theorem:

Theorem 3.2. Let $T \in L(H)$ be a non zero (A, α) operator and $T = T_n \oplus T_p$, where T_n is normal and invertible, and T_p is pure. Then, if A is semi-bounded, then $T_n = 0$ i.e. $T = T_p$ i.e. T must be pure.

4. The Prop. 3.1 has some others interesting consequences, namely the following theorem:

Theorem 3.3. Suppose that $T \in L(H)$ is a non zero (A, α) operator and $\alpha > 0$ and A is bounded below. Then if T^{-1} exists, then $T = |T^*| S_d^*$, where S_d is a unilateral isometric shift of multiplicity equal to $d = \text{dim } \text{Ker } T$, with the wandering subspace equal to $\text{dim } \text{Ker } T$, $\text{Ker } T$ being the wandering subspace.

Proof: T is not invertible, because otherwise the partial isometry Q of polar decomposition of T would be unitary, which contradicts results of [6]. If $T = Q|T|$ is the polar decomposition of T then $T^* = Q^*|T^*|$ is the polar decomposition of T^*. Since $\text{Ker } T^* = \{0\}$ by assumption, the operator Q^* is an isometry. It follows from results in [6] and Prop. 3.1, that Q^* is completely non-unitary – it follows that Q^* is a unilateral shift S_d with wandering subspace equal to $(I - Q^*Q)H$. But Q^*Q is the orthogonal projection on $\overline{R(|T|)}$; it follows that $(I - Q^*Q)$ is the orthogonal projection on $\text{Ker } T$. It follows that $T^* = Q^*|T^*| = S_d^*|T^*|$. Hence $T = |T^*| S_d^*$ which, since $(I - Q^*Q)$ is the orthogonal projection on $\text{Ker } T$, proves our claim.

For other analogous of Th. 3.1 see [3]. Lastly, we derive from Prop. 3.1 and results of [6] the following proposition:

Proposition 3.2. Suppose that the operator A is selfadjoint and semi-bounded. Then, if $T \in L(H)$ is an (A, α) operator, then zero is not in the resolvent set of T, that is $0 \in \sigma(T)$.

Received July 1, 1989

Instytut Matematyczny PAN
Kraków ul. Solskiego 30