On Singular Solutions of a Matrix Multiplicative Functional Equation

1. The well known Cauchy's equation for matrices

\[F(AB) = F(A)F(B), \]

where \(A, B \) denote the \(n \times n \) matrices, \(F \) is an \(m \times m \) matrix-function, has in the case where \(A, B \) and \(F \) are non-singular matrices and \(m < n \) the following general solutions (cf. [3])

\[F(A) = \Phi(J)CAC^{-1}, \quad J = \det A, \]

\[F(A) = \Phi(J)C(A^{T})^{-1}C^{-1}, \]

\[F(A) = G(J), \]

\(C \) being a non-singular constant matrix, \(\Phi(J) \) and \(G(J) \) scalar and arbitrary matrix-functions of one scalar argument, respectively, satisfying the equation

\[G(xy) = G(x)G(y). \]

In the present note we shall give the general solutions of equation (1) in the case where \(m < n \) but where the matrices \(A, B \) or the matrix \(F \) may be singular. The elements of these matrices are from an arbitrary field \(K \). Let us denote by \(GL(n) \) the multiplicative semigroup of all square \(n \times n \) matrices over \(K \), whereas \(GL(n) \) denotes as usual the full group of such non-singular matrices. There exist four possibilities for the multiplicative function \(F(A) \):

I \(F: GL(n) \rightarrow GL(m) \)

II \(F: GL(n) \rightarrow \overline{GL}(m) \)

III \(F: \overline{GL}(n) \rightarrow GL(m) \)

IV \(F: \overline{GL}(n) \rightarrow \overline{GL}(m) \).
We shall deal with the singular cases II-IV. The solution in the case II for \(n = m = 2 \) has been given by Kucharzewski and Kuczma [2].

We recall that if a function \(F(A) \) is a solution of (1) and \(C \) is a non-singular matrix then \(CF(A)C^{-1} \) is also a solution of (1) and thus it is sufficient to determine the solution \(F(A) \) with accuracy to the above similarity relation, i.e. to the choice of a base for \(F \) as linear transformation of the vector space \(K^m \).

First we shall state several lemmas which are valid for arbitrary \(m \) and \(n \).

Lemma 1. For any family of commuting idempotent matrices there exist a base in which all these matrices have a diagonal form (see [1], p. 15).

Let us denote by \(\{d_1, \ldots, d_n\} \) a diagonal matrix with the elements \(d_1, \ldots, d_n \) on the main diagonal.

Lemma 2. The following matrices
\[
A_{1\ldots r} = \{1_{1\ldots r}, 0_{0\ldots 0}\} \quad 0 < r < n - 1
\]

and
\[
\begin{align*}
R(q) &= \{q, 1_{1\ldots 1}\} \\
S(q) &= \left\{ \begin{bmatrix} 1 & q \\ 0 & 1 \end{bmatrix}, 1_{1\ldots 1} \right\} \\
V_i &= \left\{ 1_{1\ldots 1}, \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}, 1_{1\ldots 1} \right\},
\end{align*}
\]

where the submatrix \(\begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \) stands in lines \(i, i+1 \), generate the full semigroup \(GL(n) \), i.e. any matrix \(A \in GL(n) \) is a product of a finite number of such matrices.

In fact, matrices (5) generate all elementary non-singular matrices and thus the full linear group \(GL(n) \subset \overline{GL}(n) \). If a matrix \(B \) is singular of a rang \(r \) then there exist non-singular matrices \(P, Q \) such that
\[
B = PA_{1\ldots r}Q.
\]

\(P, Q \) are generated by matrices (5) and thus \(B \) is generated by matrices (4) and (5).

Definition 1. A solution \(F(A) \) of equation (1) will be called decomposable if there exists a base in which it has the form
\[
F(A) = \begin{bmatrix} F_1(A) & 0 \\ 0 & F_2(A) \end{bmatrix},
\]
i.e. if it is the direct sum of solutions \(F_1 \) and \(F_2 \).

Definition 2. A solution \(F \) of equation (1) will be called regular if \(F(A) = 0 \) for any singular \(A \) and \(F(A) \in GL(m) \) for any non-singular \(A \).

Obviously any regular solution is a trivial extension of a solution of equation (1) in the case I, by putting \(F(A) = 0 \) for any singular matrix \(A \).

Lemma 3. If \(F(A) \) is a non-decomposable solution then
\[
F(0) = 0 \quad \text{and} \quad F(E_n) = E_m,
\]
where E_n, E_m are the unit matrices of order n and m respectively, and 0 is the null matrix.

Proof. The matrices $F(0)$ and $F(E_n)$ are idempotent, since 0 and E_n are idempotent. If $F(0) = J
eq 0$, then, by lemma 1, in a suitable base J has the form

$$J = \{1...1, 0...0\}$$

(it is obvious that only 0's and 1's may stand on the main diagonal). Any matrix A commutes with the null matrix and thus $F(A)$ commutes with J, what implies that the solution $F(A)$ must be decomposable. The same reasoning leads to this conclusion in the case where $F(E_n) = J = 0$.

Remark. In view of (1) any constant solution different from zero is an idempotent matrix and thus it must have the form

$$F(A) = C^{-1}JC,$$

where C is a constant non-singular matrix and J has one of forms (8).

Lemma 4. The restriction of any non-decomposable solution $F: \overline{GL}(n) \to \overline{GL}(m)$ to the group $\overline{GL}(n)$ is a solution of the type I and thus if $n < m$ it has one of forms (2).

The above statement follows easily from the equation $F(E_n) = E_m$ which implies that $F(\Delta A) = E_m$ for any $A \in \overline{GL}(n)$ and thus $F(A)$ is also a non-singular matrix, and moreover

$$F(\Delta A^{-1}) = F^{-1}(A).$$

Relation (10) allows us to state the following.

Lemma 5. If the matrices $A, B \in \overline{GL}(n)$ are similar then the matrices $F(A)$ and $F(B)$ are also similar, provided F is a non-decomposable solution.

2. In this section we shall determine all solutions of equation (1) in the most general case IV. For the sake of brevity we shall write \tilde{A} instead of $F(A)$. Thus, for $A \in \overline{GL}(n)$ we will have $\tilde{A} \in \overline{GL}(m)$.

By $A_{i_1...i_r}$ we denote the diagonal matrix with r 1's standing on the diagonal on places $i_1 < ... < i_r$. All such matrices form a family of commuting idempotents and, in view of (1), all corresponding $\tilde{A}_{i_1...i_r}$ form such a family. By Lemma 1, we can choose a base in which they have the diagonal forms

$$\{\varepsilon_1, ... , \varepsilon_m\},$$

where, by idempotence, $\varepsilon_i = 0$, 1.

In the sequel we shall assume that the considered solution F is non-decomposable and thus, in particular, that relations (7) hold. We assume also $1 < m < n$.

Since for the matrices A_i ($i = 1, ..., n$), $A_i A_i = 0$ for $i \neq j$, we have also

$$\tilde{A}_i \tilde{A}_j = 0 \quad \text{for} \quad i \neq j$$

(11)
(by (7), \(\tilde{A} = 0 \)). All \(A_i \) and, by Lemma 5, also all \(\tilde{A}_i \) are similar and consequently they have the same rank, say \(s_1 \).

It follows from (11) that the matrices \(\tilde{A}_i, \tilde{A}_j (i \neq j) \) have the 1's on different places. But for \(m < n \) this may happen only if \(s_1 = 0 \) and for \(m = n \) only if \(s_1 = 0, 1 \).

The case \(m = n \). Suppose first that \(s_1 = 0 \), i.e.

\[
\tilde{A}_i = 0 \quad \text{for} \quad i = 1, \ldots, n.
\]

Set \(s_2 = \text{rang} \tilde{A}_{ij} \) \((i, j = 1, \ldots, n)\). Since, for \((ij) \neq (kl) \), \(A_{ij} A_{kl} = A_{jk} \delta_{i, l} \), using (12) we get

\[
\tilde{A}_{ij} \tilde{A}_{kl} = 0.
\]

The number of all matrices \(\tilde{A}_{ij} \) equals \(\binom{n}{2} > n \), for \(n > 2 \). For \(n = 2 \) we need only the statement about \(\tilde{A}_1 \), because in this case it is \(A_{12} = E \) and, by (7), \(A_{12} = E_{12} \). In the same way as in the precedent case we conclude from (13) that \(s_2 = 0 \). Analogously we can prove that \(s_3 = \text{rang} \tilde{A}_{ijk} \) vanishes if \(n > 3 \) and so on. Generally,

\[
\tilde{A}_{i_1 \ldots i_r} = 0 \quad \text{for} \quad 0 < r < n-1.
\]

Using formula (6), by (14) we get

\[
\tilde{B} = \tilde{F} \tilde{A}_{i_1 \ldots i_r} \tilde{Q} = 0,
\]

so that we have \(F(B) = 0 \) for every singular matrix \(B \in GL(n) \), and thus the solution \(F \) is regular (see definition 2).

Suppose now \(s_1 = 1 \). In this case we can obtain, in view of the equality \(m = n \), that

\[
\tilde{A}_i = A_i \quad \text{for} \quad i = 1, \ldots, n.
\]

From the corresponding relations for the matrices \(A_{ij} \) and \(A_i \), by addition of the sign ",,,~" and using formula (15), we get

\[
\tilde{A}_{ij} \tilde{A}_k = \begin{cases} A_k & \text{if} \quad k = i \text{ or } j \\ 0 & \text{if} \quad k \neq i, j \end{cases}
\]

Hence we conclude easily that \(\tilde{A}_{ij} = A_{ij} \) \((i, j = 1, \ldots, n)\). And generally, from the formulas

\[
\tilde{A}_{i_1 \ldots i_r} A_k = \begin{cases} A_k & \text{if} \quad k \text{ is one of indices } i_1, \ldots, i_r \\ 0 & \text{otherwise} \end{cases}
\]

we conclude that

\[
\tilde{A}_{i_1 \ldots i_r} = A_{i_1 \ldots i_r}.
\]
Now we shall determine F for a non-singular A. From the obvious relations

$$B(e)A_i = \begin{cases} B_i(e) & \text{if } i = j \\ A_j & \text{if } i \neq j \end{cases}$$

where $B_i(e) = \{1, \ldots, \sigma \ldots, 1\}$, in view of (1) and (15) we get

$$B_i(e)A_j = \begin{cases} B_i(e) & \text{if } i = j \\ A_j & \text{if } i \neq j \end{cases}$$

and hence it follows immediately that

$$(17) \quad \tilde{B}_i(e) = B_i(\psi(e))_{i, i} \quad i = 1, \ldots, n.$$

We write the same function $\psi(e)$ for all indices i since all matrices $B_i(e)$ and thus, by lemma 5, all images $\tilde{B}_i(e)$ are similar for a fixed value of e.

Furthermore, using the corresponding relations for $S(e)$ and A_i, by (15) we obtain

$$(18) \quad \tilde{S}(e)A_i = A_i, \quad A_i\tilde{S}(e) = A_i, \quad A_i\tilde{S}(e)A_i = A_i \quad \text{for } i = 3, \ldots, n,$$

where $S(e)$ is defined by (5). Hence we conclude that $\tilde{S}(e)$ has the form

$$(19) \quad \tilde{S}(e) = \begin{bmatrix} 1 & a(e) \\ 0 & 1 \end{bmatrix}, 1, \ldots, 1$$

and, from the equality $\tilde{S}(e + \sigma) = \tilde{S}(e)\tilde{S}(\sigma)$, it follows that $a(e)$ is an additive function, i.e. $a(e + \sigma) = a(e) + a(\sigma)$.

On the other hand, from the relation $S(e) = B_i(e)S(1)\tilde{B}_i^{-1}(e)$ written for images, in view of (17) and (19) we get

$$(20) \quad a(e) = \psi(e)a, \quad a = a(1)$$

and thus $\psi(e)$ is an additive function. But evidently $\psi(e)$ is a multiplicative function as it follows from equality $\tilde{B}_i(e\sigma) = \tilde{B}_i(e)\tilde{B}_i(\sigma)$. It is well known, however, that a multiplicative and additive scalar function of one real variable is the identity, i.e. $\psi(e) = e$.

Consequently, by (20), we have $a(e) = ea$ and substituting it into (19) we get

$$\tilde{S}(e) = \begin{bmatrix} 1 & ea \\ 0 & 1 \end{bmatrix}, 1, \ldots, 1$$

Taking instead of F the solution $C^{-1}FC$ where $C = \{a, 1, \ldots, 1\}$ for the new solution F we have

$$(21) \quad \tilde{S}(e) = S(e)$$
and, as \(\varphi(q) = q \),

\[
\tilde{B}_i(q) = B_i(q), \quad i = 1, \ldots, n.
\]

Furthermore, from the obvious relations

\[
\tilde{V}_i A_i \tilde{V}_i = A_{i+1} \quad \text{and} \quad A_k \tilde{V}_i A_k = A_k \quad \text{if} \quad k \neq i, i+1
\]

we obtain

\[
\tilde{V}_i = \begin{bmatrix} 1, \ldots, 1, \frac{0}{c_i}, 1, \ldots, 1 \end{bmatrix}, \quad i = 1, \ldots, n-1.
\]

In particular, from the equality \(A_2 \tilde{V}_1 S(1) A_2 = A_1 \) and from (21) we get \(c_1 = 1 \). Taking in turn instead of \(F \) the solution \(D^{-1}FD \), where

\[
D = \{ 1, 1, c_2, c_2 c_3, \ldots, c_2 \ldots c_{n-1} \}
\]

for the transformed solution \(F \) we have

\[
\tilde{V}_i = V_i \quad \text{for} \quad i = 1, \ldots, n,
\]

and formulas (21) and (22).

Thus we have proved that there exists a base in which the considered solution \(F \) satisfies formulas (16), (21), (22) and (23), what means that \(F \) is the identity on the set of generators (4) and (5). Consequently \(F \) is the identity on the whole semigroup \(GL(n) \), i.e. \(F(A) = A \) for \(A \in GL(n) \). Considering \(F \) in an arbitrary base we get generally

\[
F(A) = C^{-1}AC.
\]

Accordingly, we have

Lemma 6. In the case \(m = n \), any non-decomposable solution of equation (1) of type IV either has the general form (24) or is regular.

Remark. In order to determine \(F \) on the group \(GL(n) \) (i.e. for a non-singular \(A \)) we could use, by Lemma 4, the known solutions (2), but in this method the computations seem longer.

The case \(m < n \). As we have already proved, in this case \(s_1 = \text{rang} \tilde{A}_i = 0 \), i.e. \(\tilde{A}_i = 0 \). Using further the same procedure as in the case \(m = n \) (valid also if \(n > m \)) we obtain formula (14) from which we conclude, as in the precedent case, that the considered solution is regular. Therefore we have

Lemma 7. In the case \(1 < m < n \) any non-decomposable solution of equation (1) of type IV is regular.

Remark. We have obtained the above results using only formulas (7); therefore the statements of Lemmas 6 and 7 are valid also if we assume only (7).

If \(F \) is a decomposable solution of (1) then it is a direct sum of a finite number of non-decomposable solutions of orders \(< n \) which, by Lemma 7, are
regular if their orders are \(> 1 \), and may be constant, 0 or 1, if they are one-dimensional. Evidently any one-dimensional and non-constant solution is regular. Thus, taking into account that the direct sum of any regular solutions is also a regular one, we can write any non-constant solution different from (24) in the form

\[
F(A) = C^{-1} \begin{bmatrix}
F_1(A) \\
1 \\
1 \\
0 \\
0
\end{bmatrix} C
\]

(25)

may be \(F_1(A) = F(A) \), where \(F_1(A) \) is regular.

\(F_1(A) \) restricted to the group \(GL(n) \) is a solution of equation (1) of type I, and thus, in the considered case \(m < n \), it has one of forms (2). Accordingly we have

\[
\begin{align*}
F_1(A) &= 0 & \text{if } A \text{ is a singular matrix} \\
F_1(A) &= \text{is defined by (2) for the non-singular arguments.}
\end{align*}
\]

(26)

In particular, if \(F_1 \) is of order \(m_1 < n \) then it may take only the form (2c), i.e. \(F_1(A) \) depends only on the determinant \(J = \det A \). Assuming by definition \(G(0) = 0 \), we have in this case

\[
F_1(A) = G(J), \quad J = \det A, \quad A \in GL(n).
\]

(27)

Consequently we can formulate our main theorem as follows

Theorem. Any matrix function \(F: GL(n) \to GL(m) \) (\(m < n \)) satisfying the functional equation (1) has one of forms (9), (24) (only if \(m = n \)) or (25), where the function \(F_1 \) is given by (26) or (27).

In the case II, i.e. \(F: GL(n) \to GL(m) \), we get only the trivial solution

\[
F(A) = E.
\]

In fact, \(F(0) \) is a non-singular idempotent and thus it equals \(E \), from which we get

\[
F(A) = F(0)F(A) = F(0A) = F(0) = E.
\]

In the case III, i.e. \(F: GL(n) \to GL(m) \), the matrix \(F(E) \) must be singular, since in the other case any matrix \(F(A) \) would be non-singular and we would have the case I. If \(F(E) = J \) and \(r = \text{rang } J \), then in a suitable base \(J \) has the form (8) and from the relations

\[
F(A)J = JF(A) = F(A)
\]
we get

\[F(A) = \begin{bmatrix} F_1(A) & 0 \\ 0 & 0 \end{bmatrix}, \]

where \(F_1(A) \) is an \(r \times r \) matrix and \(F_1(E) = E_r \), what implies that all values \(F_1(A) \) are non-singular. Thus \(F_1 \) is a solution of type I.

Of course, the above two statements are valid for arbitrary \(m, n \).

REFERENCES