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GENERIC PROPERTIES OF ITERATED
FUNCTION SYSTEMS WITH PLACE
DEPENDENT PROBABILITIES

BY MARTA TYRAN-KAMINSKA

Abstract. It is shown that most (in the sense of Baire category theory) Iter-
ated Function Systems with place dependent probabilities are asymptotically
stable and nonexpansive.

Introduction. Let S;: X — X, 1 =1,..., N be a sequence of transforma-
tions and let p; : X — [0, 1] be a probabilistic vector. The action of the iterated
function system (IFS) with state dependent probabilities, (S1, ..., Sn;p1, ..., PN )
can be roughly described as follows. We choose an initial random element
zo € X and then we randomly select an integer from the set {1,..,N} in
such a way that the probability of choosing k is px(z¢), k¥ = 1,..., N. When a
number kg is drawn, we define z; = Sy, (z¢). Next we select k1, according to
the probabilistic vector (p;(z1),...,pn (1)) and we define x5 = S, (1) and so
on. Denoting by p,, the distribution of z,, i.e.

pn(A) = prob{z, € A} for every non-negative integer n

we are interested in a convergence of measures y,, to a measure u, independent
of the initial measure 1. We call such an IFS asymptotically stable.

In this paper we shall show that the set of asymptotically stable IFS’s is
residual in the family of IF'S’s, satisfying a Dini condition, acting on a closed,
convex subset of a finitely dimensional Banach space. Our proof is based on
the result of Barnsley et al. [1]. This paper is an extension of the results of
Lasota and Myjak [5] who studied iterated function systems, with constant
probabilities, acting on a convex, compact set.
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The study of generic properties of nonexpansive transformations, especially
Markov operators, has a long history. Main results and a vast literature can be
found in [2, 3, 6, 8, 9]. Our result is the first concerning generic properties of
Markov operators generated by iterated function systems with state dependent
probabilities.

1. Notation and preliminaries. Let (X, p) be a metric space such that
every closed ball in X

B(z,r) ={y € X : p(z,y) <7}

is a compact set. We denote by B(X) the o-algebra of Borel subsets of X.
The space of all finite Borel measures (non-negative, o-additive) on X will be
denoted by M. The subspace of M which contains only normalized measures
(i.e. u(X) =1, p € M) will be denoted by M; and the elements of this set
will be called distributions.
A mapping P : M — M is called a Markov operator (see [4,7]) if it satisfies

the following two conditions:

(Pup)(X) = p(X) for every p € M,

P(aipy + agpg) = a1 Ppy + asPus for py, ps € M; ag,as 2> 0.
Every Markov operator can be easily extended to the space of signed measures

Miig = {p1 — p2 : pi1, 2 € M}.
Namely, for every v € Mg;,, we define
Py = Puy; — Pus where v = py — pg; p1, 2 € M.
It is easy to verify that this definition of Pv does not depend on the choice of
P, 2 € M.

As usually by C'(X) we denote the space of all bounded continuous functions
f: X — R with the norm

Iflle = sup |f(z)].
z€X
For 1 € Mg;, we define the Fortet-Mourier norm by setting

lullz = sup{l < fou> | f € F}, where < f,u>= / f(z)u(dz)
X
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‘ and

F={feCX):llfle <1 and |f(z) - f(y)| < p(z,y) for z,y € X}.

The space M; with the distance ||u; — p2||# is a complete metric space and
the convergence

lim “P’n - /1'”.7: =0 for Bny pb € My
n—oo
is equivalent to the condition
lim < f,pu, >=< f,p> forall feC(X).
n—o0

Let P be a Markov operator; a measure u € M is called stationary or
invariant measure of P if Py = pu. A Markov operator is called asymptotically
stable if there exists a stationary distribution p, € M; of P such that

lim ||P"y — ]|z =0 for pe M.
n—+o0
We say that a Markov operator is nonezpansive if

|1Pps — Ppsllz < |lpa — pollz for pa,ps € M.

Let (Y,] ||) be a Banach space such that (X,p) C (Y,|| ||) and p(z,y) =
||z —y|| for z,y € X. Denote by C(X,Y) the set of all continuous transforma-
tions acting on X with values in Y. Let ¢ € X be a fixed point of the space
X. For each positive integer k consider a ball By = B(zg, k).

The set C(X,Y’), with the metric given by formula

L) a7 =Y Elg min1, sup [|S(a) - T(@)ll}, for 5, € C(X,Y),
k=1 x k

is a complete metric space. Moreover, the convergence with respect to this
metric has the following property: if T;,,T are elements of C(X,Y),n € N,
then

(1.2) ILm ps(Tn,T) =0 iff lim sup ||T,(z) — T(z)|| = 0 for every k € N.

n—od mGBk

For a given S € C(X,Y) we define

(1.3) L(S):sup{l—llg’—(f—c—):—S(y)—t—| ‘z,y € X,z £y}
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We call a transformation S Lipschitzian, if the quantity L(S) is finite. We
denote by Lip(X,Y’) the set of all Lipschitzian transformations from C(X,Y).
Observe that for an arbitrary real number a and S, T €Lip(X,Y) we have

(1.4) L(S+T)< L(S)+ L(T) and L(aS) = |a|L(S).
For two Lipschitzian transformations S, 7T we define
(1.5) do(S,T) =L(S —T) + p«(S,T), where p.(S,T) isgiven by (1.1).

The set Lip(X,Y) endowed with the metric dy is a complete metric space.

Finally recall that a subset of a metric space X is called residual if its
complement is a set of first Baire category. A property is said to be satisfied
by most elements of a complete space X, if it is satisfied on a residual subset.
Such a property is also called generic.

2. Iterated Function Systems. We will consider some special properties
of Markov operators describing the evolutions of measures due to the action
of randomly chosen transformations. Fix an integer N > 1.

By an Iterated Function System (shortly IFS) (Si,...,Sn;p1,...,pNn) We
mean a finite sequence of continuous transformations

(2.1) Si: X=X for e=1,2,..,N
and a probabilistic vector
(2.2) pi: X —=[0,1] for :=1,..,N.

We will always assume that the functions p; are continuous and that
N

(2.3) Zp.i(x)=1, pi(r) 20 for z€ X, i=1,..,N.
i=1

The iterated function system (2.1), (2.2) will be briefly denoted by (S,p) or
sometimes S.

For a given IFS (S, p) we define the transition operator Ps : M — M by
the formula

N
Psp(A) =) pi(z)u(dz) for Ae B(X) and pe M.
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Evidently, Ps is a Markov operator. It has the property that pu,,, = Pu,
where y,, is the sequence of measures described in the introduction.

We say that the IFS (S, p) is asymptotically stable (or that ug € M, is
a stationary measure for (S,p)) if Ps is asymptotically stable (or pug is a
stationary measure of Pg).

Now we will formulate assumptions that ensure the nonexpansivness and
asymptotic stability. We say that a probabilistic vector (py,...,px) satisfies
the Dini condition if there is a function w : [0, 00) — [0, 00) with the following
properties:

(i) w is continuous and w(0) = 0;
(ii) w is nondecreasing and concave, i.e.

aw(t) + (1 — a)w(tz) S wlaty + (1 — a)ty) for t1,t2 20, € [0,1];

(iii) w is a modulus of continuity for p;, i.e.

N
(2.4) Z Ipi(z) — pi(y)| < w(p(z,y)) for z,y e X
moreoverz‘l
L w(t)

If, for an IFS (S, p), there is a function w which satisfies the above conditions,
we will call it a Dini function of (S, p).
The following lemma was proved in [7] (see also [1]).

LEMMA 1. Assume that the IFS (S, p) satisfies the inequality

(2.6) }:m ), Si(y)) < rp(z,y) for z,y € X,

where r < 1 is a non—negatwe constant.

If there exists a Dini function of (S,p), then there exists a continuous in-
creasing concave function ¢ : [0,00) — [0,00) such that ©(0) = 0, p(c0) = 0o
and the Markov operator Ps corresponding to (S,p) is nonezpansive with re-
spect to the metric (p(z,y)), i.e.

|Pspr — Pspall 7, < llp1 = pallz, for pi,us € My,
where Fp, = {f € C(X) : [|fllc <1, |f(z) - f(¥)] < p(p(z,y)) for z,y € X}.

We call the IFS nonexpansive if there is a function ¢, described in the
above lemma, such that the corresponding Markov operator is nonexpansive
with respect to the metric o p.

We present here a criterion of the asymptotic stability in the version proved
in (1], which is the most convenient for our applications.
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THEOREM 1. Let (S,p) be an iterated function system satisfying the fol-
lowing conditions:
1) there is a Dini function of (S,p);
2) xlg)f(pz(z) > 0 for everyi € {1,...,N};
3) the transformations S; : X — X are Lipschitzian, ¢ = 1,..,N and
there ezists a non-negative constant Ag such that

ZI% <As <1 for zeX.

Under the above assumptions the system (S,p) is asymptotically stable.

The conditions in the last theorem was replaced in [7] by some weaker
conditions, for instance the second is of the form p;(z) > 0 for every r € X,
but we do not use them. In all these investigations the crucial role is played
by the number

(2.7) As = sup sz (z)L(S;).
ZEX'L 1

3. Generic properties. In this part of the paper we assume that X is a
closed convex subset of a Banach space Y. We denote by R the set of all IFS
satisfying the following conditions:

(1 S eLip(X X) i=1,..,N;
(2) ZZ 1p,( L(S;)<1lforallz € X;
(3) there is a Dini function w, of (S,p).

We define a metric in the set S8. Namely, for two given IFS (S,p), (T,q) € R,
we set

(3.1) d((S;p), Zdo S, Ty) +Zd1(p.,,qz

where dy(S;,T;) is described by (1.5) and

d1(ps, ;) = sup{|pi(z) — ¢i(z)| : = € X} fori=1,..,N.
The space R can be treated as a subset of the Cartesian product of Lip(X, Y)N
and C(X)" endowed with the metric d. In general, the space R may not be a
complete metric space, so we shall consider special subspaces of the space R.
Let K be an arbitrary non-negative constant. We will consider the following
subset of the space R

" wp(t)
Rr = {(S,p) ER:wp(l) <K and / -—%—dth}.
0

We have the following result
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THEOREM 2. The space (R, d) is a complete metric space.

Proor. Consider a sequence of iterated function systems (S,p)" =
(St,....S%;pt, ..., p%) from the space Ry and suppose that this sequence sat-
isfies the Cauchy condition with respect to the metric d. Since the space
Lip(X,Y)N x C(X)" is complete in the metric d, this sequence is convergent
to an element (S,p) = (Si,..., SN;p1,...,pn). Observe that (S,p) is an IFS
and S; €Lip(X, X). For every n we also have

N
(3.2) > pMz)L(SP) <1 forall z€ X
=1

and lim L(S?') = L(S;). Thus letting n to infinity in (3.2) we obtain condition
n—00
(2) for (S, p).

Moreover, for every n there is a Dini function of (S,p)" denoted by wp,.
From our assumption this function is concave and nondecreasing. Thus

(3.3) wn(t) < wn(1)t + wy(1).
We define, for ¢t > 0,

(3.4) w(t) := l;nigfwn (t).

According to (3.3) and the assumption w,(1) < K the function w : [0,00) —
[0, 00) is well defined and is also concave and nondecreasing. Of course w is a
modulus of continuity for (py, ...,py) because every function w,, satisfies (2.4).
To show condition (2.5), observe that the inequality

1
lim inf ﬁ"t(—t)dt <K

n-3>00 0

and the Fatou lemma imply

1 1 1
(3.5) / U0 gt = [ timinf 2O gt < iming [ O < 1
o t g N t n—oo J, t
Therefore, in order to finish the proof it is sufficient to show the continuity of
the function w.
Let 0 <ty < 1 be fixed. For arbitrary ¢ > ¢, we have w(t) = w(te). Since
the function w is non-negative we can write

1 w 1
(3.6) /O Wt) gy /t w—fzdtzw(to)ln(%).

(]
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~ From (3.6) it follows that the function w is continiuous at the point ¢ = 0. This
fact in combination with the concavity of the function w implies the continuity
of this function at every point. Thus (S, p) belongs to Rk. |

Let ® be the set of IFS’s (S, p) € R having the following properties:
(I) As = sug Zf-vzlpi(x)L(S,-) <1
z€
(I) ps = Din, infyex pi(z) > 0.

Observe that, according to Lemma 1 and Theorem 1, every element from
the set D is nonexpansive and asymptotically stable. We denote by D g the set
of those elements from ® which belong to Rg.

LEMMA 2. The set D i is dense in the space Rg endowed with the metric d.

PROOF. Fix z € X and a € (0,1). Since X is a convex set, for arbitrary
transformation S : X — X the transformation S* given by the formula

S*(z) =az+ (1 -0a)S(z) for z€ X

maps X into itself and
(3.7) L(S8% — S) = aL(S).
Moreover, using the identity S®(z) — S(z) = a(z — S(z)) for z € X and the
property (1.2) of the metric p, defined by (1.1) we infer that

CEl_r’r%),o*(.S' ,8) =0,
which together with (3.7) gives

. o o
élj)l%)do(s ,S) = 0.

We also have L(S*) = (1 — a)L(S). Therefore the set Dy of all iterated
function systems (S,p) satisfying (I) is dense in the space Rk. In order to
complete the proof it is sufficient to show that D is dense in Dk.
Let (S,p) € D and € > 0 be given. For every i € {1,...,N} and z € X we
define
€

(33) (@) = T (i(o) + 3)

Of course (S, ¢°) is an IFS fulfilling condition (II). A simple calculation shows
that

N N
)‘S €
S gt )< ST L(S).
(39) rex = @LS) S T Y T 9n - L(s:)
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Moreover, if w, is a Dini function of (S,p) then it is also a Dini function of
" (S, ¢°) because

N
1
=2 Ipi(@) — i)l < wp(plz,y)) for z,y € X.
=1

N
> lai(0) ~aE )l =

Further, since sup p;(z) < 1, we obtain from (3.8)
zeX

L pie) < 2
N P S 1l4¢

3.1 di (i, q;) =
(3.10) 1(pi, 4i) SUP T

for every 1 € {1,..., N}. According to (3.9) the IFS (S, ¢°) belongs to Dk for
¢ sufficiently small, which together with (3.10) completes the proof. O

Observe that the above proof remains the same in the case of the set © and
the space R. Thus, the set D is dense in . Now we state a simple auxiliary
lemma.

LEMMA 3. Let (S,p) and (T, q) be arbitrary elements of the space R. Then

(3.11) Ar < (1+ max L(S;))do((S,p), (T, q)) + As.

LigN

PROOF. Fix € X. For every i € {1,..., N} we have
0:i(z) L(T3) < qi(2) L(T; — Si) + qi(2) L(S;).
Since g;(z) < 1, we may rewrite the last condition in the form
qi(z)L(T:) < L(T; — S;) + di(qs, ps) L(S:) + p:L(S5),

which leads to the required inequality. O

THEOREM 3. The set of all (S,p) € Rk which are asymptotically stable
and nonezpansive is residual in R .

ProOOF. Define
mK = U BK((Sap)’(SS)a
(Syp)EDK

where By ((S,p),ds) is an open ball in R with center at (S, p) and radius

1-2As

3.12 b = pg— 25
(3.12) S =Py ¥ L)

where Lg = max{L(S;) : 1 <i < N} and \g,ps are described in (I),(II).
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Evidently, Ry is an open set containing the dense subset Dk so it is a
fesidual set. We are going to show that every element from R is asymp-
totically stable. To do this let (T, q) € Rk. Then there is (S,p) € Dk such
that

(313) d((sap)1 (Tv Q)) < 63-

By virtue of Lemma 3 and (3.12) we obtain
1 1

which, according to Lemma 1, implies that IFS (T, q) is nonexpansive. More-
over, for every ¢ € {1,..., N} we have sup |¢;(z) — pi(z)| < ds, and this leads
zeX

to

1+ 2Ls + Ag

. inf ¢;(X) > ps — 0g =

) > 0.

Consequently, in view of (3.14) and (3.15), the assumptions of Theorem 1 are
fulfilled. Thus the IFS (T, q) is asymptotically stable, which completes the
proof. : a

COROLLARY 1. The set R, of all asymptotically stable iterated function
systems (S,p) € R is residual in R.

PRrROOF. Fix (S,p) € ® and let the number dg be defined by (3.14). Con-

sider the set :
R = U B((S,p),(fs),
(S,p)eD

where B((S,p), ds) is an open ball in the space R. Hence the set R is residual
and by the same arguments, as in the proof above, this set is contained in R,.
]
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